
RESEARCH PARADIGMS
IN COMPUTER SCIENCE
Dr. Garrett Dancik

https://cse.sc.edu/~mgv/csce190f14/three_paradigms_of_computer_science.pdf

https://cse.sc.edu/~mgv/csce190f14/three_paradigms_of_computer_science.pdf

Example: factorial function
// precondition: a non-negative integer (n) is ready to be specified
// postcondition: returns n! = n*(n-1)*(n-2)*...*1, with 0! = 1.
int factorial(int n) {

int prod = 1;
for (int i = n; i>1; i--) {

prod *= i;
}
return prod;

}

• Can we prove that this function is correct?
• What if the function is called with a negative

number?
• What if the function is called with a very large

number? How reliable is the function?

// is this version better?
int factorial(int n) {

if n <= 1 {
return 1;

}
return n*factorial(n-1);

}

The Rationalist Paradigm
• Computer science is a branch of mathematics, treats

programs on a par with mathematical objects, and seeks
certain, a priori knowledge about their ‘correctness’ by
means of deductive reasoning.
1. Computers are mathematical machines.
2. Computer programs are mathematical expressions….They

describe with unprecedented precision and in every minutest
detail the behavior, intended or unintended, of the computer on
which they are executed. …

3. Programming is a mathematical activity…its successful practice
requires determined and meticulous application of traditional
methods of mathematical understanding, calculation and proof.
(Hoare 1986)

The Rationalist Paradigm
• Sometimes, program correctness be defined and

evaluated formally
• The program finds the factorial of a positive integer
• The program detects whether the face of person y appears in any

given picture (face detection)
• The program takes a regular expression (a string of text) and

returns a list of World Wide Web documents sorted by their
‘relevance’ to this expression

• Correctness in practice (formal verification)
• Coq proof assistant: https://coq.inria.fr/
• Example article:

http://www.sciencedirect.com/science/article/pii/S0167642306002048

https://coq.inria.fr/
http://www.sciencedirect.com/science/article/pii/S0167642306002048

The Rationalist Paradigm
• …but sometimes, program correctness can NOT
be defined and evaluated formally

• Example: Microsoft Word For Windows 1.1 code
• http://www.computerhistory.org/atchm/microsoft-word-for-
windows-1-1a-source-code/

• Verification questions:
• Will the program never terminate unexpectedly?
• Will the program restrict unauthorized persons from accessing

sensitive data?
• Will the program execute with visibly identical outcome regardless

of the operating system used?

http://www.computerhistory.org/atchm/microsoft-word-for-windows-1-1a-source-code/

The Technocratic Paradigm
• Computer science is a branch of engineering, and

includes aspects of software engineering, software
design, software architecture, software maintenance and
evolution, and software testing.

• Reliable knowledge about programs emanates only from
experience, whereas certain, a priori ‘knowledge’
emanating from the deductive methods of theoretical
computer science is either impractical or impossible in
principle.

• “[But] while executing a program-script in various
circumstances…can discover certain errors, no number of
tests can establish their absence” (Three Paradigms in CS, Amnon H. Eden)

Technocratic Paradigm
• The argument of complexity demonstrates that deductive

reasoning is impractical for large programs.
• "How then do engineers manage to create reliable

structures? … They have a mature and realistic view of
what "reliable" means; in particular, the one thing it never
means is "perfect." There is no way to deduce logically
that bridges stand, or that airplanes fly, or that power
stations deliver electricity." (DeMillo et. al 1979)

• Knowledge about programs (i.e., reliability) comes from
testing

• Example: http://www.computerhistory.org/atchm/microsoft-word-for-windows-1-1a-source-code/

http://www.computerhistory.org/atchm/microsoft-word-for-windows-1-1a-source-code/

The scientific paradigm
• Computer science is a branch of natural sciences, on a

par with “astronomy, economics, and geology” (Newell &
Simon 1976).

• Since many programs are unpredictable, or even
‘chaotic’, the scientific paradigm holds that a priori
knowledge emanating from deductive reasoning must be
supplanted with a posteriori knowledge emanating from
the empirical evidence by conducting scientific
experiments.

• Since program-processes are temporal,non-physical,
causal, metabolic, contingent upon a physical
manifestation, and nonlinear entities, the scientific
paradigm holds them to be on a par with mental
processes.

The scientific paradigm
• Experiments with programs go beyond establishing

reliability. Computer programs can also be used as tools
in discovering and empirically establishing laws of nature,
e.g., through simulations, testing, or artificial intelligence

• In the scientific paradigm, we test a hypothesis (claim)
• Algorithm A has a faster running time than Algorithm B
• Method A is better at identifying faces than Method B
• Constructing a pillar that partially obstructs a door increases the

number of individuals who safely exit a room in the case of a fire.

Software engineering questions

• Existence questions – does X exist?
• Is efficiency a problem for file navigation?

• Causality questions – Does X cause Y? Does X cause
more Y than Z?
• Does use of a fisheye file viewer cause programmers to be more

efficient at file navigation than conventional views?
• Description and Classification questions – What are the properties

of X? How can we measure it?
• How can we measure file navigation efficiency?

• Descriptive-Comparative questions – How does X differ from Y?
• How does a fisheye file viewer differ from a traditional one?

http://www.cs.toronto.edu/~sme/papers/2007/SelectingEmpiricalMethods.pdf

Suppose an individual is interested in comparing a new,
“fisheye” file viewer with a traditional file viewer.

http://www.cs.toronto.edu/~sme/papers/2007/SelectingEmpiricalMethods.pdf

Software engineering – methods and validity

• Method types
• Controlled experiments (this is the ideal)
• Case studies (useful, but are observational, so have limitations)
• Can be used when controlled experiments are not practical.

• Surveys identify characteristics of a broad population of individuals,
usually through questionnaires

• Validity is critical
• Construct validity – is the response correctly measured?
• Internal validity – do results follow from data, or have statistical

mistakes been made?
• External validity – can we generalize to a larger population

(inference)?
• Reliability – are the results reproducible by other researchers?

http://www.cs.toronto.edu/~sme/papers/2007/SelectingEmpiricalMethods.pdf

http://www.cs.toronto.edu/~sme/papers/2007/SelectingEmpiricalMethods.pdf

