The null distribution for the difference between two sample proportions

Suppose we have two populations with sizes n_{1} and n_{2}, and for these populations the proportion of individuals with a characteristic of interest is given by p_{1} and p_{2}, respectively. Then from the CLT (assuming at least 15 successes and failures), the sample proportions \hat{p}_{1} and \hat{p}_{2} are distributed as follows:

$$
\hat{p}_{1} \sim N\left(p_{1}, \sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}}\right) \quad \hat{p}_{2} \sim N\left(p_{2}, \sqrt{\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}\right)
$$

We are interested in the distribution of $\hat{p}_{1}-\hat{p}_{2}$.
From our previous theorem,

$$
\hat{p}_{1}-\hat{p}_{2} \sim N\left(p_{1}-p_{2}, \sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}\right)
$$

But we will operate under a null hypothesis where $p_{1}-p_{2}=0$ (i.e., the proportions in each group are the same). So let's call the common proportion p.

Then

$$
\hat{p}_{1}-\hat{p}_{2} \sim N\left(0, \sqrt{p(1-p)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}\right)
$$

Convert $\hat{p}_{1}-\hat{p}_{2}$ to the Z distribution (by subtracting off its mean, and dividing by its standard deviation). This gives

$$
Z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{p(1-p)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

and $Z \sim N(0,1)$ if the null hypothesis of equal proportions is true.
This allows us to calculate p -values based on the difference in sample proportions

