
Module 4: Probability
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Probability concepts in statistical inference

Probability is a way of quantifying uncertainty associated
with random events and is the basis for statistical inference.

Inference is the generalization of findings from a sample or
an experiment to a population.

- In a sample of 1028 adults, 11% were found to approve of
the way Congress was handling its job. How much certainty
(or confidence) do we have in saying that the true
proportion is close to 11%?

- Suppose an experiment is carried out to determine if taking
an antidepressant will help an individual quit smoking. This
study finds that at the end of 1 year, 55% of subjects
receiving an antidepressant were not smoking, compared
with 42.3% in the placebo (control) group. Can this
difference (55% vs. 42.3%) be explained by chance? 2 / 22



Probability as a measure of long-run behavior

Suppose we rolled a die 100 times. What proportion of times
would you expect to roll a 6?

What if we rolled the die 1000 times? 10,000 times?

Let’s try this experiment in R!
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The following should be clear from the die example:

With random events, the proportion of times something
happens is random and variable in the short term but
predictable in the long run. The probability of rolling a die and
getting a 6 is 1/6 ≈ 0.167.

Probability

With a randomized experiment or a random sample or other
random phenomenon, the probability of a particular outcome
is the proportion of times that the outcome would occur in a
long run of observations. This is also an example of the law
of large numbers.

This definition of probability is sometimes referred to as the
empirical probability.
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For the definition on the previous page to hold, each trial
(e.g., roll of the die) must be independent of each other.

Independent trials

Different trials of a random phenomenon are independent if
the outcome of any one trial is not affected by or correlated
with the outcome of any other trial.
Many events are independent but it can be ‘human nature’ to
think that they are not. The following are examples of
independent events

rolling a die flipping a coin having children

For example, if you roll a die and the number 5 has not come
up in 100 rolls, the probability that you roll a 5 on the next roll
is still 1/6.
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Classical Probabilities
We saw that the probability of rolling a 6 on a fair die is 1/6,
based on its long run proportion. However, we can also
determine this probability by saying that out of the 6 possible
outcomes (rollling a 1-6), there is only a single way to roll a 6.
We will talk about this approach in more detail.

Sample Space

For a random phenomenon, the sample space is the set of all
possible outcomes.

6 / 22



We will look at some examples. To help determine the sample
space, it is useful to note that if there are x possible outcomes
for each trial, and there are n trials, the sample space consists
of xn outcomes.

Example

State the sample space for the following probability
experiments:
- Flipping a coin once
- Flipping a coin twice
- Flipping a coin three times
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Event
An event is a subset of the sample space and corresponds to
a particular outcome or a group of possible outcomes. Events
are often denoted with capital letters or by a string of letters
that describe the event.
For example, consider flipping a coin three times:
A = student gets exactly 2 heads
B = student gets at least 2 heads
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Probability of an Event (classical definition)

The probability of an event A, denoted by P(A), is obtained
by adding the probabilities of the individual outcomes in the
event.

When all possible outcomes are equally likely,

P(A) =
number of outcomes in the event A

number of outcomes in the sample space

Probability characteristics for any event:
- a probability must be between 0 and 1.
- if S is the sample space, then P(S) = 1.
- a probability of 0 means the event is impossible
- a probability of 1 means the event is a certainty
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Example

Find the probability of flipping a coin 3 times and

- getting all heads

- getting at least 1 head
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The Complement of an Event

The complement of an event A consists of all outcomes in
the sample space that are not in A. It is denoted by AC . The
probabilities of A and AC add to 1, so

P(AC ) = 1− P(A)

Example

We previously found that if you flip a coin 3 times, the
probability of the event A = getting at least one head = 7/8.
Therefore, the probability of getting no heads (or all tails) is
P(AC ) = 1− P(A) = 1− 7/8 = 1/8
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Probabilities for Bell-Shaped (Normal)
Distributions
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Normal distribution
The normal distribution is symmetric, bell-shaped, and
characterized by its mean µ and standard deviation σ
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Finding probabilities for a normal random variable

Suppose that X is a random variable that is normally
distributed with mean µ and standard deviation σ. Then
X ∼ N(µ, σ)

- The total area under the curve of the normal distribution
is 1.0

- The area between two values, a and b, is the probability
that X is between a and b.

- The area to the left of a is the probability that X is less
than a.

- The area to the right of b is the probability that X is
greater than b.

We will use R to calculate probabilities of normally distributed
random variables
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Standard normal distribution
A random variable Z follows the standard normal distribution
if it is normally distributed with mean µ = 0 and standard
deviation σ = 1.

If X ∼ N(µ, σ), then Z is X−µ
σ

= z standard deviations above
the mean, and Z ∼ N(0, 1).

The standard normal distribution can therefore be used to
calculate probabilities of observations regarding standard
deviations from the mean.
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Sampling distributions

How Sample Means Vary Around the
Population Mean
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Consider a very small population of students in a class, whose
ages and gender are given in the table below.

Person Gender Age
A F 21
B M 19
C F 21
D F 21
E M 18

What is the population mean µ?

Let’s take a simple random sample of n = 3 students from this
class and calculate X̄ = the sample mean. Note that X̄ is a
random variable and therefore has a probability distribution.
Let’s find the probability distribution of X̄ as well as its mean,
or expected value, E[X̄ ].
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Find the probability distribution and expected value of X̄ when
n = 3.

How does the expected value of the sample mean X̄ compare
to the population mean µ?
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Mean and Standard Deviation of the Sampling
Distribution of the sampling distribution X̄ .

For a random sample of size n from a population having mean
µ and standard deviation σ, the sampling distribution of the
sample mean X̄ has expected value equal to the population
mean µ and a standard deviation of σ√

n
. Therefore, as n

increases the expected value of the sample mean gets closer
and closer to the population mean, µ.
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What about the shape of the distribution? If the population is
normally distributed, then X̄n is always normally distributed.

Amazingly, this is approximately the case regardless of the
distribution of the population.

The Central Limit Theorem (CLT)

For a random sample of size n from a population having mean
µ and standard deviation σ, and any distribution (shape) then
as the sample size n increases, the sample distribution of the
sample mean X̄n approaches an approximately normal
distribution. In other words, it is always approximately true
that

X̄n ∼ N
(
µ,

σ√
n

)
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In practice, the CLT holds when either the population is
normally distributed or when n > 30.

Example

Additional examples of the Central Limit Theorem
http://www.chem.uoa.gr/applets/appletcentrallimit/appl_centrallimit2.html
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The Central Limit Theorem Helps Us Make Inferences

Remember the Empirical Rule? If a distribution is
approximately bell-shaped (normal), then the percent of
observations falling between one, two, and three standard
deviations is approximately 68%, 95%, and 99.7%,
respectively.

Therefore if the sampling distribution of X̄n is (approximately)
normal, then the sample mean x̄ falls within 1 standard
deviation of the population mean (µ) 68% of the time, falls
within 2 standard deviations of the population mean 95% of
the time, and falls within 3 standard deviations of the
population mean almost all of the time.
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