Summary of Hypothesis Tests

Test	Parameter	Null Hypothesis ²	${f Test} \ {f Statistic}^3$	${f Assumptions}^4$	R
one-proportion z -test	proportion (p)	$H_0: p = p_0$	$z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)}}$	at least 15 expected successes and 15 expected failures under H_0	prop.test
one-sample <i>t</i> -test	mean (μ)	$H_0: \mu = \mu_0$	$t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}}, \text{ df} = n - 1$	$n \ge 30$ or observations are from a nor- mal distribution	t.test
two-proprtion z-test	Difference in proportions $(p_1 - p_2)$	$H_0: p_1 - p_2 = 0$	$z = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{p(1-p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}, \text{ and } p = \frac{n_1\hat{p_1} + n_2\hat{p_2}}{n_1 + n_2}.$	independent samples, at least 15 expected successes and 15 expected failures under H_0	prop.test
two-sample <i>t</i> -test	Difference in means $(\mu_1 - \mu_2)$	$H_0: \mu_1 - \mu_2 = 0$	$t = \frac{\bar{x_1} - \bar{x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$, df by Sattherthwaite formula	independent samples with unequal vari- ances, there are at least 30 observations for each group or observations are from a normal distribution	t.test

²The alternative hypothesis H_A is obtained by replacing '=' with \neq (two-tailed alternative). One-tailed alternative hypotheses are not discussed and are not recommended. ³See table below

⁴All analyses assume that the observations come from a random process (i.e., a random sample or an experiment where the treatment is randomly assigned)

³ Test statistic	Description
z	follows the standard normal distribution under H_0
t	follows the t distribution with given degrees of freedom under H_0