CHAPTER 4: PRODUCING AND ANALYZING SEQUENCE ALIGNMENTS

Dr. Garrett Dancik

Motivation

- You have recently sequenced a gene and its CDS begins with
- GGCGGAGCCAGGCCGGCCTAGAGTCACTTCTCC
- You have isolated a protein and its amino acid sequence is
- MGKEIPTDAPWEAQHADKWDKMTMKELIDKICWTKTA
- Questions:
- What does this protein do?
-What are the important functional regions?
- Do other organisms have similar genes or proteins?
- To answer these questions we can find similar sequences, identified through sequence alignments, using tools such as BLAST

Sequence alignment

- Two sequences should be aligned in such a way that maximizes their similarity
- If they derive from a common ancestor, characters (bases or amino acids) derived from the same ancestral base should be aligned
- Shared domains in proteins (and important regions in nucleotide sequences) should align, even if the sequences are not similar overall
- Alignment should take into account biological mutations and other events
- Point mutations
- Insertions or deletions (indels)
- Gene duplications and pseudogenes (a gene copy that does not produce a functional protein)
- The human genome has up to 20,000 pseudogenes!

Sequence alignment example

- Consider the alignment of two hypothetical protein sequences:

THISSEQUENCE and THATSEQUENCE

Sequence alignment example (different lengths)

- Now consider the alignment of two hypothetical protein sequences:

THATSEQUENCE and THISISASEQUENCE,

where the amino acids I, S, and A were inserted into one of the original sequences

- When aligning both sequences from the beginning
- similarity which is obvious to us is lost
- false matches are created because of differences in length

Sequence alignment example (different lengths)

- The solution is to introduce a gap, which corresponds to an insertion or a deletion and is usually indicated by a dash (-) in an alignment

T	H	I	S	I	S	A	-	S	E	Q	U	E	N	C	E
\mid	\mid					\mid		\mid							
T	H	-	-	-	-	A	T	S	E	Q	U	E	N	C	E

- There are always multiple possible alignments, and the best alignment is not always obvious
- The alignment must be selected using a quantitative scoring measure

Sequence homology

- Similarity is a descriptive term indicating that two or more sequences have a certain degree of identity or likeness
- Homologous sequences (or homologues) are sequences that are descended from a common ancestor
- Homologous genes will accumulate different mutations (divergent evolution) during the course of evolution and their sequences are often not identical.
- Convergent evolution is when sequences with high similarity are not homologous
- Sequences with high similarity are inferred to be homologous

- But homologous sequences may not have high similarity

Homology is more easily detected from protein

sequences

- Number of possible characters in nucleotides vs. proteins?
- Matches in nucleotide sequences are more likely due to chance than matches in protein sequences
- The genetic code is redundant
- Identical amino acid sequences can be encoded by different nucleotide sequences
- Nucleotide sequences are more likely to change over time
- Structure and function of a protein is determined by its amino acid sequence (although this is determined by the nucleotide sequence)

Scoring alignments

- Since multiple alignments are always possible, the best possible alignment is determined based on an alignment score
- The optimal alignment is the alignment with the best score (multiple optimal alignments are possible)
- Suboptimal alignments have slightly less scores than the best one
- The percentage or percent identity of an alignment is equal to the number of identical matches in an alignment divided by the length of the alignment (including gaps)

- The above alignment is optimal and has a percent identity of $11 / 16=68.75 \%$

Dot-plots

- A dot-plot displays the alignment of two sequences and visualizes sequence similarity graphically
- A dot indicates identity between characters of each sequence
- Interruptions along the diagonal indicate a gap
- In addition to visualizing overall similarity, dot-plots can
 indicate intrasequence repeats

Dot-plots and background noise

A. Dot-plot of an SH 2 domain with itself
B. The same dot-plot but with background noise removed, based on a window of 10 residues and a minimum identity score within each window of 3
(A)

residue number
(B)

residue number

Dot-plots showing BRCA2 repeat domain

Background is removed using a window of 30 and a minimum score of 5
(A)

(B)

Similarity versus identity

- Genuine matches do not have to be identical
- Certain non-identical amino acids may have
- Similar physical and chemical properties
- May be more likely to be present at the same region than others in related sequences
- Percent similarity is calculated in the same way as percent identity but both identical and similar matches are considered

- Isoleucine (I) and alanine (A) are hydrophobic; serine (S) and threonine (T) are polar
- Percent similarity is $12 / 15=80 \%$

Substitution matrices

- For protein sequences, the score for each aligned pair of amino acids is determined by a substitution matrix, which has values for all possible pairs of residues.
- Example using BLOSUM-62 matrix:

Seq1: T H I

Score: $5 \quad 8 \quad-1 \begin{array}{lllllllll} & 1 & 4 & 5 & 5 & 0 & 5 & 6 & 9 \\ 5\end{array}$

This alignment has an overall score (S) of 52

Substitution matrices

- BLOSUM matrices
- BLOck SUbstitution Matrix
- Based on local alignments to detect conserved short regions
- Sequences grouped based on percent identity, where the percent identify threshold for grouping determines the specific BLOSUM matrix
- BLOSUM-62 is based on grouping aligned sequences with no more than 62% identity
- Substitution frequencies are then calculated
- Positive scores indicate conservative (more likely) substitutions
- Negative scores indicate non-conservative (less likely) substitutions
- All BLOSUM matrices are based on observed alignments

Substitution matrices

- Point Accepted Mutation (PAM) matrices
- Based on amino acid frequencies in alignment of similar (>85\% identical) and homologous protein sequences
- Probabilities were calculated for whether a given amino acid mutates to any other over a given period of time
- The logarithm of this probability gives the substitution score
- Based on number of changes from each amino acid and total number of occurrences
- There are multiple PAM matrices and the PAM \# corresponds to the number of accepted point mutations per 100 residues.
- All PAM matrices are based on PAM1; others are inferred.
- For example, the PAM250 contains scores based on an expected evolutionary distance corresponding to 250 point accepted mutations for every 100 amino acid residues

PAM vs. BLOSUM Substitution matrices

- Choice depends on evolutionary distance
- For closely related sequences
- Use higher BLOSUM number and lower PAM number
- For distantly related sequences
- Use lower BLOSUM number or higher PAM number

Inserting Gaps

- A gap in a sequence alignment indicates an insertion or deletion in the sequence
-When a gap is introduced, a gap opening penalty is added to the score
- Insertions and deletions are not likely to occur in regions of structural importance
- Insertions tend to be several residues long
- A smaller gap extension penalty is added each time a gap is extended
- Gaps cannot be aligned with each other

Gap Penalties

- A "gap" (composed of a sequence of gap characters in the alignment, e.g., -- -) has a penalty composed of a gap opening penalty for the initial character of each gap and a gap extension penalty for each subsequent character. Typically gaps are not penalized if they occur at the beginning or end of the alignment (this is known as a semi-global alignment)
- Here we use a gap opening penalty of 10 and a gap extension penalty of 1

Seq1:	S	E	Q	U	E	N	-	E
Seq2:	-	-	Q	-	-	N	C	E
Score:	0	0	5	-10	-1	6	-10	5
Not pen alignm	zed i			opening alty		xtension	Gap pena	

This semi-global alignment has an overall score (S) of -5

Types of alignments

- A (semi) global alignment aligns two sequences across their entire lengths
- Appropriate for homologous sequences
- A local alignment detects shared regions (e.g., domains) which may be missed in global alignments
- A pairwise alignment is the alignment of two sequences
- A multiple alignment is the simultaneous alignment of more than two sequences

Many proteins have multiple domains

PK3B_HUMAN

P13K68D_HUMAN

(A) local

PI3-kinase DRHNSNIMVKDDGQLFHIDFG
cAMPPK DLKPENLLIDQQGYIQVTDFG

Local and global alignments

(B) global

1020
30
40
50

PI3-kinase HQLGNLR--LEECRI---MSSAKRPLWLNWENPDIMSELLFQNNEIIFKNGDDLRQDMLT | CAMP PK | GNAAAAKKGXEQESVKEFLAKAKEDFLKKWENPAQNTAHLDQFERIKTLGTGSFGRVML- | | | |
| :---: | :---: | :---: | :---: | :---: |
| | 10 | 20 | 30 | 40 |

$60 \quad 70 \quad 80$
90
100
110

PI3-kinase LQIIRIME--NIWQNQGLDLRMLPYGCLSIGDCVGLIEVVRNSHTIMQ-IQCKGGLKGAL | CAMP PK | $---V K H M E T G N H Y A M K I L D K Q K V V K-------L K Q I E H T L N E K R I L Q A V N F P F L V K L E F ~$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

	120						130	140	150	160
PI3-kinase	QFNSHT-LHQWLKDKNKGEIYDAA--IDLFTRSCAGYCVATFILGIGDRHNSNIMVKD-D									
CAMP PK	SFKDNSNLYMVMEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLK									
	110	120	130	140	150					

Alignment algorithms (preview)

- Needleman-Wunsch (1970) and variations:
- for aligning two sequences
- uses dynamic programming to "consider" all possible alignments (there are 10^{600} possible alignments for two sequences of length 1000; there are only 10^{80} atoms in the known universe)
- FASTA: uses a heuristic method for efficient searches (though not guaranteed to find the optimal solution)
- Creates dictionary of k-tuples for the query sequence which is checked against sequences in the database
- A local alignment algorithm is used to complete the alignment
- BLAST (Basic Local Alignment Search Tool): also fast and uses a heuristic
- Finds short matches (which do not have to be exact)
- Then uses local alignment to complete the alignment

