
JavaScript
Dr. Garrett Dancik



JavaScript overview
• JavaScript is a programming language that can be used 

to add, remove, change, or modify HTML elements and 
CSS settings on a web page.

• JavaScript can also be used as a standalone language, 
but most often is it used for creating dynamic web pages

• JavaScript syntax has many similarities with C++ and 
Java, though it is not related to either

• These notes and examples highlight some of the key 
concepts and differences between JavaScript and other 
programming languages.



First JavaScript example
// example for loop
let sum = 0;
for (let i = 1; i <= 10; i++) {

sum += i;
}
document.write('<p>The sum of 1-10 is: ' + sum + '</p>');

// example if..else statement
sum = 0;
if (sum > 5) {

document.write('<p>The sum is greater than 5</p>');
} else {

document.write('<p>The sum is NOT greater than 5</p>');
}



JavaScript variable declaration and scope

• JavaScript best practices for declaring variables:
• Use var only for global variables (though only use global 

variables if necessary)
• Use const for constant variables (elements of arrays can still be 

changed)   (introduced 2015)
• Use let for all other variables   (introduced 2015)

Declaration Example Scope Allows 
redeclaration?

Allows 
reassignment?

const const x = 4; Block No No

var var x = 4; Global or Function Yes Yes

let let x = 4; Block No Yes

(none)* x = 4; Global Yes Yes

*When using strict mode, referencing an undeclared variable will cause an error. 
You should always use strict mode! (https://www.w3schools.com/js/js_strict.asp) 

https://www.w3schools.com/js/js_strict.asp


Variable declaration and scope (con't)
• A variable that is not initialized will have the value 

undefined
• JavaScript has a bizarre behavior known as “hoisting” 

where variable declarations but not assignments are 
moved to the top of the current scope
• This also allows you to call functions before they are 

defined, if a function declaration is used
• Variables declared using let and const are technically 

hoisted but cannot be accessed until they are initialized
• More details and examples:

• https://www.w3schools.com/js/js_scope.asp
• https://www.w3schools.com/js/js_let.asp

https://www.w3schools.com/js/js_scope.asp
https://www.w3schools.com/js/js_let.asp


HTML Document Object Model (DOM)
• The HTML DOM provides standards for programmatically 

accessing, changing, adding, or deleting HTML elements

source: https://www.w3schools.com/js/js_htmldom.asp

• Key observation:
• The DOM defines a tree 

where HTML elements 
have children and 
parents

• Each HTML element has 
attributes and styles and 
includes its children

https://www.w3schools.com/js/js_htmldom.asp


Finding and changing HTML elements
Method For Finding HTML elements Description

document.getElementById(id) Find an element by its unique id 
(returns a single element)

document.getElementsByTagName(name) Find elements by tag name 
(returns a HTMLCollection)

document.getElementsByClassName(name) Find elements by class name
(returns a HTMLCollection)

Modified from: https://www.w3schools.com/js/js_htmldom_document.asp

Syntax for accessing and/or changing* an 
element Description

element.innerHTML The inner HTML of an element 
(may contain HTML tags)

element.innerText The inner text of an element 
(HTML tags are ignored)

element.attribute The attribute value of an HTML element

element.style.property
The style of an HTML element
(properties are in camelCase, 
e.g., 'background-color' is 'backgroundColor')

*Assignment is used to change the corresponding value; for example to change the HTML of an element use, 
e.g., element.innerHTML = “<h2> Changed </h2>”

These work for 
any element 
(not just the 
document)

https://www.w3schools.com/js/js_htmldom_document.asp


Functions in JavaScript
• Functions can be created using a function declaration:

• function add(x,y) {
return x + y;

}

• Functions can be created using a function expression:

• myfunction = function(x,y,…) {
return x + y;

}

• Arrow functions are a short-hand way of defining function expressions, by 
omitting the function and return keywords, and the braces:

• myfunction = (x,y) => x + y;  



Functions in JavaScript (con't)
• The this keyword refers to the object the code belongs to.
• By itself, this refers to the [Global Window]
• In a function declaration or expression, this refers to the element 

that called the function
• If the function was called from the window and you are in strict mode, then 

this is undefined; otherwise, this is [object Window]
• For arrow functions, this refers to the owner of the function

• Don't use arrow functions to respond to events if you need to know what 
triggered the event

• Function declarations are hoisted while function 
expressions and arrow functions are not.

• For more information, see:
• https://www.w3schools.com/js/js_function_definition.asp
• https://www.w3schools.com/js/js_this.asp

https://www.w3schools.com/js/js_function_definition.asp
https://www.w3schools.com/js/js_this.asp


Events in JavaScript
• JavaScript is used to respond to events, such as a button 

click.

Complete list: https://www.w3schools.com/jsref/dom_obj_event.asp

Table from: https://www.w3schools.com/js/js_events.asp

https://www.w3schools.com/jsref/dom_obj_event.asp
https://www.w3schools.com/js/js_events.asp


Events in JavaScript
• You can set the event attribute of the element: 

• <button onclick = "alert('hi');">Click </button>
• The value of an attribute is a string that specifies JavaScript to be executed

• You can use an event listener to attach or remove an event handler to 
an element:
• element.addEventListener("click", myfunction);
• element.removeEventListener("click", myfunction);
• the second argument of each must be a function, which can be 

anonymous, though anonymous functions can't be removed:
• element.addEventListener("click", function() {alert('hi');});

• Using the event listener gives you more control and is preferred as it 
separates the web page structure from its logic, and allows the event 
to trigger multiple function calls

• More information
• https://www.w3schools.com/js/js_events.asp
• https://www.w3schools.com/js/js_htmldom_eventlistener.asp

https://www.w3schools.com/js/js_events.asp
https://www.w3schools.com/js/js_htmldom_eventlistener.asp


Additional notes
• Most of the time for web development, we use JavaScript 

in order to: 
• get one or more HTML elements (by id, class name, tag name, etc) 

in order to change the HTML or the attributes of an element
• respond to events (clicking, mousing over an element, etc)

• We will use JavaScript arrays and objects (see the 
examples)

• Tips for troubleshooting code:
• Look at the console (which is where errors will be displayed)

• Generally, there will not be errors on the web page.
• Use console.log and alerts to test your code. These can be 

especially useful to test whether a function is being called.


