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Classification Methods

* Objective: Identify the class (category/label) of an
individual (e.g., will purchase a specific product —
Yes/No) based on observed features (e.g., gender,
location, age, purchase history, etc)

* Classes: ¢y, €y, ..., Cy Features: x, ..., X,

e General Procedure

— Train the classifier: Using a training data set, determine the
mapping function f(x) =2 ¢

— Validation: assess the accuracy of the classifier by applying
it to a test data set with known classes
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Classification Methods: Decision Trees (DT)
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Note: DT are known to overfit data. However more rubust methods

such as Random Forests can be used




Classification Methods: Support Vector Machines (SVM)

* Find the optimum
hyperplane that
linearly separates
the classes

* [f classes are not
linearly separable,
map the data into a
higher dimensional
space through the
use of a kernel
function

Images modified from Mingyue Tan / Andrew Moore



Classification Methods: Support Vector Machines (SVM)

S
®o .
. :
.
l®
Y
.
.
.
.
.....
......

v

a
>

Images modified from Mingyue Tan / Andrew Moore



