
CSC 202: Intro to Machine Intelligence
Natural Language Processing Project

You must turn in a Jupyter Notebook that carries out the appropriate analysis. Your notebook
should begin with your name and a one paragraph summary describing the main goals of your
project (e.g., to find the most common words in a collection of tweets). Each code cell should
be preceded by a markdown cell that describes what the code does (as in the class notes). Your
Notebook should be correctly formatted with an appropriate title, section headers, and
subsection headers. [20 points]

1. Complete one of the following to collect data to analyze [25 points]:

• Collect at least 200 tweets, using pagination to get multiple pages of results (see the
second example at https://docs.tweepy.org/en/latest/v2_pagination.html)

• Retrieve data from at least one Wikipedia page, but the more the better (see previous
lab for an example)

• Read data from a plain text file, which can be done using the code below (the file should
be a plain text file (with a .txt extension) from the same directory as your Notebook):

o with open('file.txt', 'r') as f : # open a file for reading

 text = f.read() # stores the text of the file in text

For possible data sets, the following web sites may be useful. Note that you will need to
copy or save the text to a plain text file.

- Public domain books: Project Gutenberg (https://www.gutenberg.org/)
- Song lyrics: https://www.lyrics.com/
- Movie scripts:

o The Internet Movie Script Database, https://imsdb.com/
o Awesome Film, http://www.awesomefilm.com/

2. Complete any three of the following [25 points each]

a. Generate a table showing the 20 top most frequently occurring words and their

frequencies, and generate a wordcloud of the text. For this analysis, stopwords
should be removed, and all words should be converted to lowercase. You may
also choose to stem or your text, and may choose to restrict the wordcloud to,
e.g., the top 50 words if it is too cluttered.

b. Repeat the above using n-grams. An n-gram corresponds to a set of n
consecutive words. A bigram is an n-gram where n = 2 and a trigram is an n-
gram where n = 3. For example, the sentence “how are you?” has bigrams of

https://docs.tweepy.org/en/latest/v2_pagination.html
https://www.gutenberg.org/
https://www.lyrics.com/
https://imsdb.com/
http://www.awesomefilm.com/

“how are” and “are you”. Using textblob, n-grams can be accessed using
blob.ngrams(n). Generate a table and/or wordcloud showing the most common
bigrams and/or trigrams.

c. Sentiment analysis (select at least one)

i. Output the five most positive sentences, lines, or tweets, and the five
most negative sentences, or lines, or tweets. This requires creating a list
of sentence-polarity pairs, and then sorting the results by polarity. The
sorting process is very similar to sorting word-frequency pairs by
frequency.

ii. Compare the sentiment of two different text collections (e.g., tweets
about two different topics, or two different chapters). Recommended:
compare sentiments visually using a boxplot. An example of a boxplot can
be shown here: https://i0.wp.com/datavizpyr.com/wp-
content/uploads/2020/06/customize_mean_mark_in_boxplot_Seaborn_
boxplot_Python.png?resize=605%2C484&ssl=1

In order to generate a boxplot, create a data frame where each column
contains the sentiment values for a different group. The code below uses
pd.concat to concatenate (combine) data frames, which will handle the
case where the groups do not have the same number of sentiment
values.

import pandas as pd

import seaborn as sns

lists contains the sentiments for each group

group1 = [-.5, 0, .2, -.4]

group2 = [0, .3, .8, -.1, .3]

create data frames for each group

df1 = pd.DataFrame({'group1':group1})

df2 = pd.DataFrame({'group2':group2})

combine the data frames

df = pd.concat([df1,df2], axis=1)

generate the boxplot

sns.boxplot(data = df)

d. Use named entity recognition to output the most commonly mentioned entities

for various types, such as the most common people (PERSON), organizations
(ORG) or geopolitical entities (GPE). Hint: use a Counter object to count the

https://i0.wp.com/datavizpyr.com/wp-content/uploads/2020/06/customize_mean_mark_in_boxplot_Seaborn_boxplot_Python.png?resize=605%2C484&ssl=1
https://i0.wp.com/datavizpyr.com/wp-content/uploads/2020/06/customize_mean_mark_in_boxplot_Seaborn_boxplot_Python.png?resize=605%2C484&ssl=1
https://i0.wp.com/datavizpyr.com/wp-content/uploads/2020/06/customize_mean_mark_in_boxplot_Seaborn_boxplot_Python.png?resize=605%2C484&ssl=1

frequency of each element in a list (for an example see
https://www.hackerrank.com/challenges/collections-counter/problem)

e. Other analyses may be acceptable. I encourage you to be creative and contact

me with ideas.

https://www.hackerrank.com/challenges/collections-counter/problem

