Analysis of Algorithms:
 Sorting algorithms (Selection sort and Quicksort)

Garrett Dancik, PhD
Fall 2021

Course Notes: https://gdancik.github.io

What do we mean by Sorting?

- One of the most common operations in computer science is to sort data numerically or alphabetically
- We have seen previously that sorted data can be searched much more efficiently than unsorted data. Why?
- In addition, for presentation purposes, elements such as names, states, ages, GPAs, etc, are often displayed in sorted order (numeric data may be sorted from low to high or high to low; when we say that numeric data is sorted we will mean low to high)
11

21
18
3
15
19

- The list above in sorted order is: $3,11,15,18,19$, and 21

Selection sort

- Find the maximum element in the list (all n elements)
- Swap this maximum element with the last element in the list
- Find the maximum element in the list (first $n-1$ elements)
- Swap this maximum element with the second to last element in the list
- Find the maximum element in the list (first $n-2$ elements)
- Swap this maximum element with the third to last element in the list
- This process repeats until we are down to the first element. This is the minimum element, which is now the first element in the list

11	21	18	3	15	19

Selection sort (example)

- We search all $n=6$ elements for the maximum, and swap this maximum element with the last one in the list (the $6^{\text {th }}$ one)

The max is $21 \rightarrow$ swap this with the last element

11	19	18	3	15	21

Selection sort (example)

- We search the first $n-1=5$ elements for the maximum, and swap this maximum element with the $5^{\text {th }}$ one (or the second to last one)

The max is $19 \rightarrow$ swap this with the $5^{\text {th }}$ element

11	15	18	3	19	21

Selection sort (example)

- We search the first $n-2=4$ elements for the maximum, and swap this maximum element with the 4th one

Swap max with
This is the max this element

The max is $18 \rightarrow$ swap this with the $4^{\text {th }}$ element

11	15	3	18	19	21

Selection sort (example)

- We search the first $\mathrm{n}-3=3$ elements for the maximum, and swap this maximum element with the $3^{\text {rd }}$ one

Swap max with
This is the max this element

The max is $15 \rightarrow$ swap this with the $3^{\text {rd }}$ element

11	3	15	18	19	21

Selection sort (example)

- We search the first $\mathrm{n}-4=2$ elements for the maximum, and swap the maximum element with the $2^{\text {nd }}$ one

Swap max with
This is the max this element

The max is $11 \rightarrow$ swap this with the $2^{\text {nd }}$ element

3	11	15	18	19	21

Selection sort (example)

- Once we have only 1 element left (we are finding the max of just the $1^{\text {st }}$ element), then we are done. The list is now sorted.

Selection sort algorithm

- end $=\mathrm{n}-1$
- while end >0 :
- Set max_index to the index of the maximum element between values[0] through values[end]
- Swap values[max_index] and values[end]
- Set end = end - 1

Selection sort algorithm

- end $=\mathrm{n}-1$
- while end >0 :
- Set max_index to the index of the maximum element between values[0] through values[end]
- Swap values[max_index] and values[end]
- Set end = end - 1
- Set max_index to 0
- Set i to 0
- While i <= end:
- If values[i] > values[max_index]:
- set max_index to i
- set $i=i+1$

Selection sort algorithm

- end $=\mathrm{n}-1$
- while end >0 :
- Set max_index to 0
- Set i to 0
- While $i<=$ end:
- If values[i] > values[max_index]:
- set max_index to l
- Set $i=i+1$
- Swap values[max_index] and values[end]
- Set end = end - 1

Selection sort algorithm

Assume that $n=4$

- end $=\mathrm{n}-1$
- while end >0 :
- Set max_index to 0
- Set i to 0
- While $i<=$ end:
- If values[i] > values[max_index]:
- set max_index to I
- Set $i=i+1$
- Swap values[max_index] and values[end]
- Set end = end - 1

end	\# iterations of inner while loop
3	4
2	3
1	2
0	-

In general, for a list of size n, the total number of inner loop iterations is:
$2+3+4+\ldots .+n$
This is $n(n+1) / 2-1$, which has an order of magnitude of n^{2}.

Quicksort algorithm

- Quicksort(arr, low, high) :
- While low < high :
- pi = partition (arr, low, high)
- Quicksort(arr, low, pi-1)
- Quicksort(arr, pi + 1, high)

Partition step:

- select a pivot
- move pivot to correct location
- all elements less than pivot are moved to its left
- all elements greater than pivot are moved to its right
- Return partition index

2	1	3	4	5

Pivot is in the correct location

Partition algorithm

- Inputs:

- arr (the list/array)
- low (index of lower element),
- high (index of last element, which will be the pivot)
- Set left = low
- Set pivot = arr[high]
- Set right = high - 1
- While left <= right:
- Increase left by 1 until arr[left] > pivot (or left > right)
- Decrease right by 1 until arr[right] <= pivot (or left > right)
- If left < right, swap arr[left] and arr[right]
- Increase left by 1
- Decrease right by 1

left right

- Swap arr[left] and arr[high]
- Return left

Quicksort example

Quicksort example

Quicksort running times

- The worst case occurs if the original data is sorted, then the partition will keep the pivot in the last element and we will call quicksort on $\mathrm{L} 1=$ list containing all elements but the last one; L 2 has no elements. The running time is $\theta\left(n^{2}\right)$
- Also see https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-ofquicksort

| 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad Partition looks at 6 elements

| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | Call quicksort on L1 Partition looks at 5 elements

 1 2 3 4	Partition looks at 4 elements	The total number of elements we look at is: $2+3+\ldots .+n$
	Partition looks at 3 elements	which is $\theta\left(n^{2}\right)$
	Partition looks at 2 elements	

Quicksort running times

- The best case occurs when the partitions are evenly balanced. In this case the number of sub-list pairs that get sorted is $\log n$. The running time is $\theta(n \log n)$.
- Also see https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-ofquicksort

The total number of elements we look at is approximately $11 \times\lfloor\log n\rfloor$ which is $\theta(n \log n)$

Selection sort and Quicksort algorithms

	Selection sort		Quicksort	
	Time	Additional Space	Time	Additional
		$\theta(1)$	$\theta(n \log n)$	$\theta(\log n)$
Best	$\theta\left(n^{2}\right)$	$\theta(1)$	$\theta\left(n^{2}\right)$	$\theta(n)$
Worst	$\theta\left(n^{2}\right)$	$\theta(1)$	$\theta(n \log n)$	$\theta(\log n)$
Average	$\theta\left(n^{2}\right)$			

- Which algorithm is the best?

When a function is called, information is stored in the call stack

Call stack

$\rightarrow \mathrm{a}=1$
$\operatorname{def} f(x)$:
$b=2$
return $b+x$
$y=f(a)$
print(y)

Call stack

$a=1$
$\operatorname{def} f(x)$:
$\rightarrow \quad b=2$
return $b+x$
$y=f(a)$
print(y)

Call stack

$a=1$
$\operatorname{def} f(x)$:
$b=2$
return $b+x$ $y=f(a)$
$\rightarrow \operatorname{print}(y)$

In quicksort, recursive function calls are stored on the stack,

- n times in the worst case
- roughly $\log n$ times in the best/average case.

