Analysis of Algorithms: Sorting algorithms (Selection sort and Quicksort)

Garrett Dancik, PhD Fall 2021

Course Notes: https://gdancik.github.io

What do we mean by Sorting?

- One of the most common operations in computer science is to sort data numerically or alphabetically
- We have seen previously that sorted data can be searched much more efficiently than unsorted data. Why?
- In addition, for presentation purposes, elements such as names, states, ages, GPAs, etc, are often displayed in sorted order (numeric data may be sorted from low to high or high to low; when we say that numeric data is sorted we will mean low to high)

• The list above in sorted order is: 3, 11, 15, 18, 19, and 21

Selection sort

- Find the maximum element in the list (all *n* elements)
 - Swap this maximum element with the last element in the list
- Find the maximum element in the list (first n 1 elements)
 - Swap this maximum element with the second to last element in the list
- Find the maximum element in the list (first *n* 2 elements)
 - Swap this maximum element with the third to last element in the list
- This process repeats until we are down to the first element. This is the minimum element, which is now the first element in the list

 We search all n = 6 elements for the maximum, and swap this maximum element with the last one in the list (the 6th one)

The max is 21 \rightarrow swap this with the last element

 We search the first n-1 = 5 elements for the maximum, and swap this maximum element with the 5th one (or the second to last one)

The max is 19 \rightarrow swap this with the 5th element

• We search the first *n*-2 = 4 elements for the maximum, and swap this maximum element with the 4th one

The max is 18 \rightarrow swap this with the 4th element

 We search the first n – 3 = 3 elements for the maximum, and swap this maximum element with the 3rd one

The max is 15 \rightarrow swap this with the 3rd element

 We search the first n – 4 = 2 elements for the maximum, and swap the maximum element with the 2nd one

The max is $11 \rightarrow$ swap this with the 2nd element

• Once we have only 1 element left (we are finding the max of just the 1st element), then we are done. The list is now sorted.

- *end* = n − 1
- while *end* > 0 :
 - Set max_index to the index of the maximum element between values[0] through values[end]
 - Swap values[max_index] and values[end]
 - Set *end* = *end* 1

- *end* = n − 1
- while *end* > 0 :
 - Set max_index to the index of the maximum element between values[0] through values[end]
 - Swap values[max_index] and values[end]
 - Set *end* = *end* 1

- Set *max_index* to 0
- Set *i* to 0
- While *i* <= end:
 - If values[i] > values[max_index]:
 - set *max_index* to *i*
 - set *i* = *i* +1

- *end* = n 1
- while *end* > 0 :
 - Set *max_index* to 0
 - Set *i* to 0
 - While *i* <= end:
 - If values[*i*] > values[*max_index*]:
 - set max_index to I
 - Set *i* = *i* + 1
 - Swap values[max_index] and values[end]
 - Set *end* = *end* 1

This suggests an order of magnitude of n^2

Executed n-1 times (while loop)

Executed up to n - 1 times each time (while loop)

- *end* = n − 1
- while *end* > 0 :
 - Set *max_index* to 0
 - Set *i* to 0
 - While *i* <= end:
 - If values[*i*] > values[*max_index*]:
 - set max_index to I
 - Set *i* = *i* + 1
 - Swap values[max_index] and values[end]
 - Set *end* = *end* 1

Assume that n = 4

end	# iterations of inner while loop		
3	4		
2	3		
1	2		
0	-		

In general, for a list of size *n*, the total number of inner loop iterations is:

2 + 3 + 4 + + *n*

This is n(n+1)/2 - 1, which has an order of magnitude of n^2 .

Quicksort algorithm

- Quicksort(arr, low, high) :
 - While low < high :
 - pi = partition (arr, low, high)
 - Quicksort(arr, low, pi 1)
 - Quicksort(arr, pi + 1, high)

select a *pivot* move *pivot to* correct location • all elements less than pivot • are moved to its left all elements greater than • pivot are moved to its right Return partition index We select the last 5 element as the pivot Call Quicksort on L1 Pivot is in the correct 5 location Call Quicksort on L2 L2 L1

Partition step:

•

Quicksort example

Quicksort example

Quicksort running times

- The worst case occurs if the original data is sorted, then the partition will keep the pivot in the last element and we will call quicksort on L1 = list containing all elements but the last one; L2 has no elements. The running time is $\theta(n^2)$
- Also see https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-quicksort

Quicksort running times

- The *best case* occurs when the partitions are evenly balanced. In this case the number of sub-list pairs that get sorted is log n. The running time is θ(n log n).
- Also see <u>https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-quicksort</u>

The total number of elements we look at is approximately 11 x $\lfloor \log n \rfloor$ which is $\theta(n \log n)$

Selection sort and Quicksort algorithms

	Selection sort		Quicksort	
	Time	Additional Space	Time	Additional Space
Best	$\theta(n^2)$	$\theta(1)$	$\theta(n\log n)$	$\theta(\log n)$
Worst	$\theta(n^2)$	$\theta(1)$	$\theta(n^2)$	$\theta(n)$
Average	$\theta(n^2)$	$\theta(1)$	$\theta(n\log n)$	$\theta(\log n)$

• Which algorithm is the *best*?

When a function is called, information is stored in the *call stack*

