
Analysis of Algorithms:
Sorting algorithms (Selection sort and Quicksort)

Garrett Dancik, PhD
Fall 2021

Course Notes: https://gdancik.github.io

https://gdancik.github.io/

What do we mean by Sorting?

• One of the most common operations in computer science is to sort
data numerically or alphabetically
• We have seen previously that sorted data can be searched much

more efficiently than unsorted data. Why?
• In addition, for presentation purposes, elements such as names,

states, ages, GPAs, etc, are often displayed in sorted order (numeric
data may be sorted from low to high or high to low; when we say
that numeric data is sorted we will mean low to high)

• The list above in sorted order is: 3, 11, 15, 18, 19, and 21

11 21 18 3 15 19

Selection sort
• Find the maximum element in the list (all n elements)
• Swap this maximum element with the last element in the list

• Find the maximum element in the list (first n – 1 elements)
• Swap this maximum element with the second to last element in the list

• Find the maximum element in the list (first n – 2 elements)
• Swap this maximum element with the third to last element in the list

• This process repeats until we are down to the first element. This is the
minimum element, which is now the first element in the list

11 21 18 3 15 19

Selection sort (example)
• We search all n = 6 elements for the maximum, and swap this

maximum element with the last one in the list (the 6th one)

11 21 18 3 15 19

Swap max with
this element

11 19 18 3 15 21

The max is 21 à swap this with the last element

This is the max

Selection sort (example)
• We search the first n-1 = 5 elements for the maximum, and swap this

maximum element with the 5th one (or the second to last one)

11 19 18 3 15 21

Swap max with
this element

11 15 18 3 19 21

The max is 19 à swap this with the 5th element

This is the max

Selection sort (example)
• We search the first n-2 = 4 elements for the maximum, and swap this

maximum element with the 4th one

11 15 18 3 19 21

Swap max with
this element

11 15 3 18 19 21

The max is 18 à swap this with the 4th element

This is the max

Selection sort (example)
• We search the first n – 3 = 3 elements for the maximum, and swap

this maximum element with the 3rd one

11 15 3 18 19 21

Swap max with
this element

11 3 15 18 19 21

The max is 15 à swap this with the 3rd element

This is the max

Selection sort (example)
• We search the first n – 4 = 2 elements for the maximum, and swap

the maximum element with the 2nd one

11 3 15 18 19 21

Swap max with
this element

3 11 15 18 19 21

The max is 11 à swap this with the 2nd element

This is the max

Selection sort (example)
• Once we have only 1 element left (we are finding the max of just the

1st element), then we are done. The list is now sorted.

3 11 15 18 19 21

Selection sort algorithm

• end = n – 1
• while end > 0 :
• Set max_index to the index of the maximum element between values[0]

through values[end]
• Swap values[max_index] and values[end]
• Set end = end - 1

Selection sort algorithm

• end = n – 1
• while end > 0 :
• Set max_index to the index of the maximum element between values[0]

through values[end]
• Swap values[max_index] and values[end]
• Set end = end - 1

• Set max_index to 0
• Set i to 0
• While i <= end:
• If values[i] > values[max_index]:
• set max_index to i

• set i = i +1

Selection sort algorithm

• end = n – 1
•while end > 0 :
• Set max_index to 0
• Set i to 0
• While i <= end:
• If values[i] > values[max_index]:
• set max_index to I

• Set i = i + 1
• Swap values[max_index] and values[end]
• Set end = end - 1

Executed n – 1 times (while loop)

Executed up to n – 1 times each time (while loop)

This suggests an order of magnitude of n2

Selection sort algorithm

• end = n – 1
•while end > 0 :
• Set max_index to 0
• Set i to 0
• While i <= end:
• If values[i] > values[max_index]:
• set max_index to I

• Set i = i + 1
• Swap values[max_index] and values[end]
• Set end = end - 1

end # iterations of inner
while loop

3 4

2 3

1 2

0 -

Assume that n = 4

In general, for a list of size n, the total
number of inner loop iterations is:

2 + 3 + 4 + …. + n

This is n(n+1)/2 – 1, which has an
order of magnitude of n2.

Quicksort algorithm

• Quicksort(arr, low, high) :
• While low < high :

• pi = partition (arr, low, high)
• Quicksort(arr, low, pi – 1)
• Quicksort(arr, pi + 1, high)

Partition step:
• select a pivot
• move pivot to correct location

• all elements less than pivot
are moved to its left

• all elements greater than
pivot are moved to its right

• Return partition index

2 5 1 4 3

2 1 3 4 5

We select the last
element as the pivot

Pivot is in the correct
location

L1 L2

Call Quicksort on L1

Call Quicksort on L2

Partition algorithm
• Inputs:

• arr (the list/array)
• low (index of lower element),
• high (index of last element, which will be the pivot)

• Set left = low
• Set pivot = arr[high]
• Set right = high – 1
• While left <= right:

• Increase left by 1 until arr[left] > pivot (or left > right)
• Decrease right by 1 until arr[right] <= pivot (or left > right)
• If left < right, swap arr[left] and arr[right]
• Increase left by 1
• Decrease right by 1

• Swap arr[left] and arr[high]
• Return left

2 5 1 4 3

2 1 5 4 3

left right

2 5 1 4 3

left right

2 5 1 4 3

left right

left right

2 1 3 4 5

Quicksort example

2 5 1 4 3

2 1 3 4 5

L1 L2

2 1

1 2

4 5

Call quickSort on
L1

Call quickSort on
L2

1 2 3 4 5

Partition

Partition
4 5

Partition

Quicksort example
2 1 4 3 7 6 9 8 5

L1 L2Call quickSort on
L1

2 1 4 3 5 6 9 8 7

2 1 4 3

2 1 3 4

6 9 8 7

6 7 8 9

L1

2 1

1 2

8 9

8 9

Partition

Partition

Partition

Partition

Partition

Call quickSort on
L1 L2

L2 is a single
number; stop

Call quickSort on
L2

L1 L2

L1 is a single
number; stop

Call quickSort on
L2

Quicksort running times
• The worst case occurs if the original data is sorted, then the partition

will keep the pivot in the last element and we will call quicksort on
L1 = list containing all elements but the last one; L2 has no elements.
The running time is 𝜃 𝑛!

• Also see https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-
quicksort

1 2 3 4 5 6

1 2 3 4 5

1 2 3 4

1 2 3

1 2 Partition looks at 2 elements

Partition looks at 3 elements

Partition looks at 4 elements

Partition looks at 5 elements

Partition looks at 6 elements

The total number of elements we
look at is: 2 + 3 + …. + n

which is 𝜃(𝑛!)

Call quicksort on L1

Call quicksort on L1

Call quicksort on L1

Call quicksort on L1

https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-quicksort

Quicksort running times
• The best case occurs when the partitions are evenly balanced. In this

case the number of sub-list pairs that get sorted is log 𝑛. The running
time is 𝜃 𝑛 log 𝑛 .

• Also see https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-
quicksort

- - - - - - - - - - -

- - - - - - - - - -

- - - - - - - -

Partition looks at 11 elements

Partition looks at 10 elements (~ 11 elements)

Partition looks at 8 elements (~ 11 elements)

The total number of elements we look at is approximately 11 x log 𝑛 which is 𝜃 𝑛 log 𝑛

https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-quicksort

Selection sort and Quicksort algorithms

Selection sort Quicksort

Time Additional
Space

Time Additional
Space

Best 𝜃 𝑛! 𝜃 1 𝜃 𝑛 log 𝑛 𝜃 log 𝑛
Worst 𝜃 𝑛! 𝜃 1 𝜃 𝑛! 𝜃 𝑛

Average 𝜃 𝑛! 𝜃 1 𝜃 𝑛 log 𝑛 𝜃 log 𝑛

• Which algorithm is the best?

When a function is called, information is
stored in the call stack

In quicksort, recursive
function calls are
stored on the stack,
• n times in the

worst case
• roughly log n

times in the
best/average case.

