Analysis of Algorithms:
Sorting algorithms (Selection sort and Quicksort)

Garrett Dancik, PhD
Fall 2021

Course Notes: https://gdancik.github.io

https://gdancik.github.io/

What do we mean by Sorting?

* One of the most common operations in computer science is to sort
data numerically or alphabetically

* We have seen previously that sorted data can be searched much
more efficiently than unsorted data. Why?

* |[n addition, for presentation purposes, elements such as names,
states, ages, GPAs, etc, are often displayed in sorted order (numeric
data may be sorted from low to high or high to low; when we say
that numeric data is sorted we will mean low to high)

a2 s 3 15| 19

* The list above in sorted order is: 3,11, 15,18, 19, and 21

Selection sort

* Find the maximum element in the list (all n elements)
e Swap this maximum element with the last element in the list

* Find the maximum element in the list (first n — 1 elements)
e Swap this maximum element with the second to last element in the list

* Find the maximum element in the list (first n — 2 elements)
e Swap this maximum element with the third to last element in the list

* This process repeats until we are down to the first element. This is the
minimum element, which is now the first element in the list

T T TR T T T

Selection sort (example)

* We search all n = 6 elements for the maximum, and swap this
maximum element with the last one in the list (the 6" one)

Swap max with
This is the max this element

| |

I S T Y TR TR

The max is 21 -> swap this with the last element

I I T N TR

Selection sort (example)

* We search the first n-1 =5 elements for the maximum, and swap this
maximum element with the 5t one (or the second to last one)

Swap max with
This is the max this element

| |

I T Y TR

The max is 19 - swap this with the 5t element

I I I N T -

Selection sort (example)

* We search the first n-2 = 4 elements for the maximum, and swap this
maximum element with the 4th one

Swap max with
This is the max this element

|

“a s s | s L E | @

The max is 18 - swap this with the 4th element

I T I - T -

Selection sort (example)

* We search the first n — 3 = 3 elements for the maximum, and swap
this maximum element with the 3™ one

Swap max with
This is the max this element

|

a1 s s | E® L E | @

The max is 15 = swap this with the 3 element

I I < T - -

Selection sort (example)

* We search the first n —4 = 2 elements for the maximum, and swap
the maximum element with the 2" one

Swap max with
This is the max this element

|

a1 s T E | E L E | @

The max is 11 = swap this with the 2" element

- m § | {© | @© | M

Selection sort (example)

* Once we have only 1 element left (we are finding the max of just the
15t element), then we are done. The list is now sorted.

g . m ' ©§ | © | @© | M

Selection sort algorithm

eend=n-1

 while end >0 :

* Set max_index to the index of the maximum element between values[0]
through values[end]

* Swap values[max_index] and values[end]
e Setend=end-1

Selection sort algorithm

eend=n-1
e whileend >0 :

* Set max_index to the index of the maximum element between values[0]
through values[end]

* Swap values[max_index] and values[end]
e Setend=end-1
 Set max _indexto O
e SetitoO
 Whilei<=end:
e If values]i] > values[max_index]:
 set max_ indextoi
e seti=ij+1

Selection sort algorithm

eend=n-1
° Whlle end>0: Executed n—1 times (while loop)
 Set max _indexto O
* SetitoO
* Whilei<=end:
 If values[i] > values[max_index]:
 set max _indexto |l
e Seti=i+1
e Swap values[max_index] and values[end]
e Setend=end-1

Executed up to n — 1 times each time (while loop)

This suggests an order of magnitude of n?

Selection sort algorithm

Assume thatn =4

eend=n-1

R
e while end >0 : while loop

 Set max _indexto O :

3
. 2
* SetitoO . ,
* Whilei<=end: -

 If values[i] > values[max_index]:

* set max_mdex to/ In general, for a list of size n, the total
e Setj=/j+1 number of inner loop iterations is:

* Swap values[max_index] and valuesfend] .5,

e Setend=end -1
This is n(n+1)/2 — 1, which has an

order of magnitude of n2.

Partition step:
e select a pivot

Qu | C kS O rt a | go r|t h m * move pivot to correct location

* all elements less than pivot
are moved to its left
e all elements greater than

* Quicksort(arr, low, high) : pivot are moved to its right
* While low < high : * Return partition index
e pi = partition (arr, low, high)

nﬂn- We select the last
)) . element as the pivot
* Quicksort(arr, low, pi —1) Call Quicksort on L1

Pivot is in the correct

C A 1 hi |
Quicksort(arr, pi + 1, high) Call Quicksort on L2 nnﬂnu location

L1 L2

Partition algorithm S
215118

* Inputs:
* arr (the list/array)

 Jow (index of lower element), left right
* high (index of last element, which will be th | |
+ Set left = low 2514
» Set pivot = arrlhigh]
left right

e Set right = high—1 L
* While left <= right:
* Increase left by 1 until arr[left] > pivot (or left > right) /' nﬂnn-

* Decrease right by 1 until arr[right] <= pivot (or left > right) left right
* If left < right, swap arr[left] and arr[right] Vo

* Increase left by 1 \ n..nn

* Decrease right by 1
e Swap arr[left] and arr[high]

e Return left N n.ﬂnn

Quicksort example

2]5]1]4]
D Partition
21845

L1 L2

Call quickSort on
L2

Call quickSort on
%

Partition

\
I
HEEHE

n. Partition

A2

Quicksort example

211141317/6/918)
2/11413186/9/8)7

Call quickSort on L1 L2 Call quickSort on

LIA/ \Ez

Enl Partition EEE. Partition
BRED Griga
Call quickSort on 1 E L1 L2 Call quickSort on

ALl/ . : \ L2
L2 is a single L1 'Ss 5|.ngtle
El number; stop NUMBEr; Stop al Partition

Partition
HE Bl

Partition

Quicksort running times

* The worst case occurs if the original data is sorted, then the partition
will keep the pivot in the last element and we will call quicksort on
L1 = list containing all elements but the last one; L2 has no elements.
The running time is 8 (n?)

* Also see https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-

guicksort
EBHB. Partition looks at 6 elements
HEBH. ‘/Ca”qUiCkSOFt onll Partition looks at 5 elements
Eal%an quicksort on L1 The total number of elements we

Partition looks at 4 elements look atis:2+3+...+n
A/Call quicksort on L1
El Partition looks at 3 elements which is 8(n?)

Call quicksort on L1
. Partition looks at 2 elements

https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-quicksort

Quicksort running times

* The best case occurs when the partitions are evenly balanced. In this
case the number of sub-list pairs that get sorted is log n. The running

timeis 8(nlogn).

* Also see https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-

quicksort

IIIIIHIIIII Partition looks at 11 elements
IIHII IIHII Partition looks at 10 elements (~ 11 elements)
VAR TN

II II II II Partition looks at 8 elements (~ 11 elements)

The total number of elements we look at is approximately 11 x [log n] which is 8(nlogn)

https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-quicksort

Selection sort and Quicksort algorithms

Time Additional Time Additional
Space Space

Best 0 (n?) 0(1) 6(nlogn) 6(logn)
Worst 0(n?) 0(1) 0 (n?) 0(n)
Average 0 (n?) (1) O(nlogn) 0 (logn)

* Which algorithm is the best?

When a function is called, information is

stored in the call stack

Call stack

—>» a=1
def f(x):
b=2
return b+x
y =f(a)
print(y)

Call stack

Call stack

a=1
def f(x):
—>» b=2
return b+x
y =f(a)
print(y)

a=1
def f(x):
b=2
return b+x
y =f(a)
—» print(y)

In quicksort, recursive

function calls are

stored on the stack,

* n timesinthe
worst case

* roughlylogn
times in the
best/average case.

