
Analysis of Algorithms:
Sequential and Binary Searching Algorithms

Garrett Dancik, PhD
Fall 2021

Course Notes: https://gdancik.github.io

https://gdancik.github.io/

What do we mean by Searching?

• We want to search a list for a particular value, and output whether
the value is in the list or is not.
• Determine if a student is on my roster for CSC 180
• Determine whether a song is on a play list
• Modifications to this algorithm can be used to "look up" information

• Look up a student's GPA (we need to find the student in the list)
• Reverse phone number look up (look up number and get the person)

• For now we assume that the list is unordered (e.g., not sorted from
smallest to largest; not alphabetical)

• In the list above,
• If we look for 19, we should output "FOUND"
• If we look for 100, we should output "NOT FOUND"

0 21 19 0 18 19

Sequential search algorithm
• Set the query to the desired search term (number, string, word, etc)
• Set index to 0
• Set Found to False
• While index < n AND Found is False :

• If values[index] is equal to query:
• Print message indicating the query has been found
• Set FOUND to True

• Else :
• Increase index by 1

• If Found is False :
• Print message indicating that the query was not found

We search through the list sequentially
(from left to right), one element at a
time, stopping when the element is
found or when we reach the end of the
list.

Sequential search algorithm (example)

• Search for "Jones" in a list of names
• query = "Jones"

index: 0

Gates Jobs Musk Jones Smith Lovelace

Found = False

Sequential search algorithm (example)

• Search for "Jones" in a list of names
• query = "Jones"

index: 0

Gates Jobs Musk Jones Smith Lovelace

Found = False

The list element ("Gates") is not equal to the query ("Jones"),
so increase index by 1

Sequential search algorithm (example)

• Search for "Jones" in a list of names
• query = "Jones"

index: 0 1

Gates Jobs Musk Jones Smith Lovelace

Found = False

The list element ("Jobs") is not equal to the query ("Jones"),
so increase index by 1

Sequential search algorithm (example)

• Search for "Jones" in a list of names
• query = "Jones"

index: 0 1 2

Gates Jobs Musk Jones Smith Lovelace

Found = False

The list element ("Musk") is not equal to the query ("Jones"),
so increase index by 1

Sequential search algorithm (example)

• Search for "Jones" in a list of names
• query = "Jones"

Found = True

The list element ("Jones") is equal to the query ("Jones"), so:
• Print that the query was found
• Set Found to True
• We are now done with the loop

index: 0 1 2 3

Gates Jobs Musk Jones Smith Lovelace

Sequential search algorithm:

• Running time
• Best case: the first element matches the query

• The loop is repeated 1 time, so the order of magnitude for the running time is constant.
• Worst case: the query is not in the list

• The loop is repeated n times (we must check every element to ensure that it is not in the
list). The order of magnitude for the running time is n.

• Average case: How many times will the loop repeat, on average, assuming the
query is equally likely to be anywhere in the list, or not in the list at all. The
order of magnitude for the running time is n.

• While index < n AND FOUND is False :
• If values[index] is equal to query:

• Print message indicating the query has been found
• Set FOUND to True

• Else :
• Increase index by 1

Focus on the loop because this is
where the major work occurs (the
other operations are all constant)

Binary search algorithm
• If the data is sorted, and we want to find an element in the list, we can do the

following:
• Check the element in middle of the list

• If the query comes before this element alphabetically or numerically, then we know the
element we are looking for, if in the list, is in the first half. Select the middle element from
the first half of the list.

• Otherwise, we know the element must be in the second half of the list, if it exists. Select
the middle element from the second half of the list.

• We repeat this process until the element is found or no elements remain
• Every time we look at an element, we either:

• Find the element we are looking for
• Eliminate half of the remaining list

Binary search algorithm
• The data is sorted
• We want to find "Jobs"

index: 0 1 2 3 4 5 6

Bezos Gates Jobs Jones Lovelace Musk Smith

Binary search algorithm
• The data is sorted
• We want to find "Jobs"

index: 0 1 2 3 4 5 6

Bezos Gates Jobs Jones Lovelace Musk Smith

Check the middle element between index values
0 and 6, which has index (0+6)/2 = 3

The list element ("Jones") is greater than the query ("Jobs"),
so look at the middle element between index values
0 and 2, which is (0+2)/2 = 1

Binary search algorithm
• The data is sorted
• We want to find "Jobs"

index: 0 1 2 3 4 5 6

Bezos Gates Jobs Jones Lovelace Musk Smith

Check the middle element between index values
0 and 6, which has index (0+6)/2 = 3

The list element ("Jones") is greater than the query ("Jobs"),
so look at the middle element between index values
0 and 2, which is (0+2)/2 = 1

Note that we can now rule out all elements from index 3 on

Binary search algorithm
• The data is sorted
• We want to find "Jobs"

index: 0 1 2 3 4 5 6

Bezos Gates Jobs Jones Lovelace Musk Smith

Check the middle element between index values
0 and 2, which has index (0+2)/2 = 1

The list element ("Gates") is less than the query ("Jobs"),
so look at the middle element between index values
2 and 2, which is (2+2)/2 = 2

Note that we can also rule out all elements up to and including index 1

Binary search algorithm
• The data is sorted
• We want to find "Jobs"

index: 0 1 2 3 4 5 6

Bezos Gates Jobs Jones Lovelace Musk Smith

Check the middle element between index values
2 and 2, which has index (2+2)/2 = 2

The list element ("Jobs") is the query element ("Jobs"),
we have found the element!

Binary search algorithm – tree visualization

index: 0 1 2 3 4 5 6

Bezos Gates Jobs Jones Lovelace Musk Smith

3

Bezos Gates Jobs

Jones

Lovelace Musk Smith

Bezos Jobs Lovelace Smith

1 5

0 2 4 6

If query < element If query > element

If query < element
If query < element If query > elementIf query > element

Binary search algorithm – tree visualization
3

Bezos Gates Jobs

Jones

Lovelace Musk Smith

Bezos Jobs Lovelace Smith

1 5

0 2 4 6

• The crux of the algorithm is checking whether the current element is what we are looking for.
• We only need to do one check (comparison) for each level of the tree
• What is the most checks that we will need to do?

Level 0

Level 1

Level 2

Binary search algorithm
• The number of comparisons is roughly the number of times we can divide

the list into 2
• Suppose we had 8 elements
• 8 / 2 à 4
• 4 / 2 à 2
• 2 / 2 à 1

• 8 can be divided by 2 three times.
• In other words, 23 = 8

• log2 8 = 3
• The number of times n can be divided by 2 is: log2 n

Binary search algorithm

• The number of levels in the tree is 𝑙𝑜𝑔! 𝑛 + 1, where is the
floor function which means to round down
• In the case of 7, 𝑙𝑜𝑔! 7 + 1 = 2.8 + 1 = 2 + 1 = 3

• Best case (first value matches): 𝜃 1
• Worst case (searches entire tree): 𝜃 𝑙𝑜𝑔! 𝑛
• Average case: 𝜃 𝑙𝑜𝑔! 𝑛

Order of magnitude: 𝑙𝑜𝑔! 𝑛 vs n

n log (n)

1 0

2 1

4 2

8 3

16 4

32 5

64 8
https://dev.to/b0nbon1/understanding-big-o-notation-with-javascript-25mc

• Order n: doubling the size of the input will result in an algorithm that takes twice
as long

• Order 𝑙𝑜𝑔! 𝑛 : if you double the size of the input, you increase the number of
operations by 1 (which hardly increases the running time)

https://dev.to/b0nbon1/understanding-big-o-notation-with-javascript-25mc

Binary search algorithm

• Set left to 0 and right to n – 1
• Set Found to False
• While (not Found and left <= right) :
• Set m to the middle value, at index (left + right) / 2, rounding down if the

result is a decimal
• If L[m] < T :

• Set L to m + 1
• Elif L[m] > T :

• Set R to m – 1
• Else : (we have found the target)

• Set Found to True

We have a list L of n elements and are looking for a target element T.

Because each iteration of the while
loop effectively reduces the searchable
elements by ½, the loop is repeated at
most 𝑙𝑜𝑔! 𝑛 + 1 times.

Hypothetical running times

• Suppose our computer can do 10,000 comparisons per second

• Binary search requires that the data is sorted, but we can sort data in
𝑛 𝑙𝑜𝑔! 𝑛 time. If we will need to search data multiple times, it is better to
sort the data and use binary search.

Linear Search Binary Search

n # comparisons (seconds) # comparisons (seconds)

1,000 1,000 (0.1 seconds) 10 (0.001 seconds)

10,000 10,000 (1 second) 13 (0.0013 seconds)

1,000,000 1,000,000
(100 seconds = 1 min 40 sec) 20 (0.002 seconds)

1,000,000,000 1,000,000,000
(100000 seconds ~ 27 hours) 30 (0.003 seconds)

