
Transistors, Boolean Logic and
Logical Gates

Garrett Dancik, PhD
Fall 2021

Course Notes: https://gdancik.github.io

https://gdancik.github.io/

Why Binary?

• The foundation of computer hardware (processing and
memory) are devices that can operate in two stable
states.
• A transistor can either turn current on (1) or off (0)
• Magnetic core memory (common until 1975): a core can be

magnetized in either the clockwise or counter-clockwise
direction
• A hard drive consists of regions of magnetic material which

can be magnetized (1) or not (0)

https://www.amazon.com/MCIGICM-200pcs-Transistor-Bipolar-Transistors/dp/B06XRBLKDR

emitter

collector

base

https://www.amazon.com/MCIGICM-200pcs-Transistor-Bipolar-Transistors/dp/B06XRBLKDR

Transistor basics
• A transistor is a semi-conductor that can amplify or switch electronic signals.

• The base is used to open/close the switch
• If the control line is set to 1, then the switch is closed, and current will flow from the collector to

the emitter. The transistor is ON (1). (This is the state of the current figure)
• If the control line is set to 0, then switch is open, and current will not flow from the collector to the

emitter. The transistor is OFF (0)

Collector

Emitter

Power supply

Base
(control)

https://commons.wikimedia.org/wiki/File:Transistor.symbol.npn.svg

A transistor can be OFF (0) or ON (1)

Additional details: https://www.youtube.com/watch?v=stM8dgcY1CA

Collector

Emitter

Power supply

1

High voltage = ON
Binary value = 1

Collector

Emitter

Power supply

No Voltage = OFF
Binary value = 0

0

https://www.youtube.com/watch?v=stM8dgcY1CA

Boolean logic

• Computer circuits are constructed based on Boolean logic
• Boolean logic is a branch of mathematics (algebra) that deals with true and

false values

• In computer logic,
• true represents a binary 1 or a transistor that is ON
• false represents a binary 0 or a transistor that is OFF

• Boolean operations include AND, OR, NOT, NOR, NAND, and XOR

Truth table for AND and OR

Inputs Output

a b a AND b
(also written as a ! 𝑏)

True (1) True (1) True (1)

True (1) False (0) False (0)

False (0) True (1) False (0)

False (0) False (0) False (0)

The expression a AND b is True only if
both a and b are True

Truth table for: a AND b

Inputs Output

a b a OR b
(also written as a +𝑏)

True (1) True (1) True (1)

True (1) False (0) True (1)

False (0) True (1) True (1)

False (0) False (0) False (0)

The expression a OR b is True if
either a or b are True (including if both are True)

Truth table for: a OR b

Truth table for NOT

• Boolean logic examples:
• grade is between 90 and 100

• grade >= 90 AND grade <= 100
• User has typed 'Y' or 'y'

• userInput == 'Y' OR userInput == 'y'
• User has not typed 'Y' or 'y'

• userInput != 'Y' AND userInput != 'y'

Inputs Output

a NOT a
(also written as .a)

True (1) False (0)

False (0) True (1)

The expression NOT a is True if
a is False and is False if a is True

Truth table for: NOT a

Truth table for NAND and NOR

Inputs Output

a b a NAND b
(also written as a∙b)

True (1) True (1) False (0)

True (1) False (0) True (1)

False (0) True (1) True (1)

False (0) False (0) True (1)

The expression a NAND b is equivalent to
NOT (a AND b) and is True if either a or b are False

Truth table for: a NAND b

Inputs Output

a b a NOR b
(also written as a + 𝑏)

True (1) True (1) False (0)

True (1) False (0) False (0)

False (0) True (1) False (0)

False (0) False (0) True (1)

The expression a NOR b is equivalent to
NOT (a OR b) and is True only if both a and b are False

Truth table for: a NOR b

Logic Gates
• A logic gate is an electronic device that

takes one or more binary inputs and
produces a single binary output.
• Gates are created from transistors
• Types of gates: AND, OR, NAND, NOR (and

XOR and XAND)
• An AND gate is shown on the right

• Recall: If the base (input) is 1, the transistor
switch will be closed

• Only if A and B are both 1, will current flow from
the power supply through the transistors,
resulting in voltage at the output (OUT)

• This gives a digital implementation of the
Boolean AND operator

https://www.electronics-tutorials.ws/logic/logic_2.html

Power supply

.

Transistor AND Gate

Additional Gates

Transistor OR Gate

Power supply

Transistor NAND Gate

Power supply

https://www.electronics-tutorials.ws/logic/

http://www.exclusivearchitecture.com/?page_id=2425

Logic gates are the building blocks of
computer systems

XOR is an exclusive or which returns True only if a and b are different

Inputs Output

a b a XOR b

True (1) True (1) False (0)

True (1) False (0) True (1)

False (0) True (1) True (1)

False (0) False (0) False (0)

Exclusive OR (XOR)

https://circuitverse.org/users/89029/projects/xor-75562e33-e621-4231-aad9-dc5f6eb649af

https://circuitverse.org/users/89029/projects/xor-75562e33-e621-4231-aad9-dc5f6eb649af

Digital Circuits

• A circuit is a collection of logic gates that transform binary inputs into
binary outputs.
• If the outputs depend only on the current inputs, the circuit is a

combinational circuit
• If the outputs also depend on previous inputs, the circuit is a sequential

circuit

• Every output in a circuit can be represented as a Boolean expression
• We will use https://circuitverse.org/ to simulate circuits

https://circuitverse.org/

CircuitVerse overview
• Let's use https://circuitverse.org/ to simulate our own NAND circuit using an AND gate and a NOT

gate

1. Select an AND gate from the Gates panel and add it
2. Select two binary Input elements from the Input panel (the Input element is the first one)
3. Draw lines from each input to the AND gate
4. Add a NOT gate from the Gates panel
5. Connect the output of the AND gate to the input of the NOT gate
6. Add an Output element from the Output panel (the first element)
7. Connect the output of the NOT gate to the Output element

Tricks:
- You can click on an element and hit delete to delete it.
- Click and drag an element to move it
- Hold shift and move the mouse to select multiple elements

https://circuitverse.org/

Circuit Construction Algorithm

• Construct a Truth table
defining the relationship
between inputs and outputs
• Specify one or more Boolean

expressions that hold for every
row where the output is 1,
and which never evaluate to 1
otherwise. This is always
possible by using the AND
operator and all inputs, some
of which may be inverted.
• Use OR to combine the

Boolean expressions identified
in the step above

Inputs Output

a b a XOR b

1 1 0

1 0 1

0 1 1

0 0 0

a AND NOT b

NOT a AND b

Circuit is equivalent to:

(a AND NOT b) OR (NOT a AND b)

a XOR b

Example – identity comparator

• Determine the Boolean expression that corresponds to the output from the
below Truth Table for the identity comparator. Then construct the
corresponding circuit. The identity comparator outputs a 1 if both of its
inputs are the same (both 1 or both 0)

• Note: This is equivalent to NOT XOR, or XNOR
• However, let's assume that we do not have an XNOR gate. How can we

create a XNOR circuit from AND, NOT, and OR gates?

Inputs Output

a b output

1 1 1

1 0 0

0 1 0

0 0 1

