
Analysis of Algorithms:
Data Cleanup Algorithms

Garrett Dancik, PhD
Fall 2021

Course Notes: https://gdancik.github.io

https://gdancik.github.io/

What do we mean by Data Cleanup?

• If data contains invalid or missing values, those invalid values should
be removed.
• In a survey, a student does not enter their age (or enters an invalid one)
• In a survey, a student does not enter their GPA (or enters an invalid one)

• We will assume that missing / invalid values are recorded as 0
• Example data:

• In this case, we want a list containing only the numbers: 21, 19, 18,
and 19

0 21 19 0 18 19

Shuffle-left algorithm
• While position <= num_valid :
• If num[position] is invalid, e.g., 0 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

0 21 19 0 18 19

0 21 19 0 18 19

Since the first number is 0, we shift all other numbers one position to the left

num_valid = 6

position

Original list

Updated list

Shuffle-left algorithm
• While position <= num_valid :
• If num[position] is invalid, e.g., 0 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

0 21 19 0 18 19

0 21 19 0 18 19

Since the first number is 0, we shift all other numbers one position to the left

num_valid = 6

position

Original list

Updated list

Shuffle-left algorithm
• While position <= num_valid :
• If num[position] is invalid, e.g., 0 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

0 21 19 0 18 19

0 21 19 0 18 19

Since the first number is 0, we shift all other numbers one position to the left

num_valid = 6

position

Original list

Updated list

Shuffle-left algorithm
• While position <= num_valid :
• If num[position] is invalid, e.g., -1 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

0 21 19 0 18 19

21 21 19 0 18 19

Since the first number is 0, we shift all other numbers one position to the left

num_valid = 6

position

Original list

Updated list

Shuffle-left algorithm
• While position <= num_valid :
• If num[position] is invalid, e.g., 0 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

0 21 19 0 18 19

21 19 19 0 18 19

Since the first number is 0, we shift all other numbers one position to the left

num_valid = 6

position

Original list

Updated list

Shuffle-left algorithm
• While position <= num_valid :
• If num[position] is invalid, e.g., 0 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

0 21 19 0 18 19

21 19 0 0 18 19

Since the first number is 0, we shift all other numbers one position to the left

num_valid = 6

position

Original list

Updated list

Shuffle-left algorithm
• While position <= num_valid :
• If num[position] is invalid, e.g., 0 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

0 21 19 0 18 19

21 19 0 18 18 19

Since the first number is 0, we shift all other numbers one position to the left

num_valid = 6

position

Original list

Updated list

Shuffle-left algorithm
• While position <= num_valid :
• If num[position] is invalid, e.g., 0 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

0 21 19 0 18 19

21 19 0 18 19 19

Since the first number is 0, we shift all other numbers one position to the left

num_valid = 6

position

Original list

Updated list

Shuffle-left algorithm
• While position <= num_valid :
• If num[position] is invalid, e.g., 0 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

0 21 19 0 18 19

21 19 0 18 19 19

Since the first number is 0, we shift all other numbers one position to the left

num_valid = 5
position

Original list

Updated list

Shuffle-left algorithm
• While position <= num_valid :
• If num[position] is invalid, e.g., 0 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

21 19 0 18 19 19

num_valid = 5

position

Shuffle-left algorithm
• While position <= num_valid :
• If num[position] is invalid, e.g., 0 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

21 19 0 18 19 19

num_valid = 5

position

Shuffle-left algorithm
• While position <= num_valid :
• If num[position] is invalid, e.g., 0 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

21 19 0 18 19 19

num_valid = 5

position

Shuffle-left algorithm
• While position <= num_valid :
• If num[position] is invalid, e.g., 0 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

21 19 0 18 19 19

num_valid = 5

position

21 19 0 18 19 19

Shuffle-left algorithm
• While position <= num_valid :
• If num[position] is invalid, e.g., 0 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

21 19 0 18 19 19

num_valid = 5

position

21 19 18 18 19 19

Shuffle-left algorithm
• While position <= num_valid :
• If num[position] is invalid, e.g., 0 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

21 19 0 18 19 19

num_valid = 5

position

21 19 18 19 19 19

Shuffle-left algorithm
• While position <= num_valid :
• If num[position] is invalid, e.g., 0 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

21 19 0 18 19 19

num_valid = 5
position

21 19 18 19 19 19

Shuffle-left algorithm
• While position <= num_valid :
• If num[position] is invalid, e.g., 0 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

• The final list, containing 4 valid items, is below:

21 19 18 19 19 19

num_valid = 4

Shuffle-left algorithm:

• Running time (best case)
• If no numbers are invalid, then the while loop is executed n times, where n is

the initial size of the list, and the only other operations are the comparison in
the if statement, and position is increased by 1. The running time is 𝜃(𝑛). This
is the best case.

• While position <= num_valid :
• If num[position] is invalid, e.g., 0 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

Shuffle-left algorithm:

• Running time (worst case):
• If all the numbers are invalid, then for all n passes through the list, n - 1 copies

(shifts) are made. This is a worst case.
• The total number of operations in the loop is (ignoring comparisons):

• For the first position: n + 1 operations: n – 1 copies, plus 2 to increase num_valid and position
• For the second position: n operations, n – 2 copies, plus 2 to increase num_valid and position

• The total number of operations is the sum of 1 through n + 1 which equals
• n(n+1)/2 + 1 à 𝜃(𝑛!)

• While position <= num_valid :
• If num[position] is invalid, e.g., 0 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

Shuffle-left algorithm:

• Running time:
• Best case (all entries are valid) is 𝜃 𝑛
• Worst case (all entries are invalid) is 𝜃 𝑛!
• Average case is also 𝜃 𝑛!

• Space:
• n (all cases – best, worst, and average) (n is required for the original list, plus a

few additional variables)

• While position <= num_valid :
• If num[position] is invalid, e.g., 0 :

• All valid numbers to the right of num are shifted 1 position to the left
• Decrease num_valid by 1

• Else:
• Increase position by 1

Copy-over algorithm

0 21 19 0 18 19

• Find the total number of valid elements in the list, and store in num_valid
• Create an empty list, called copyNum, of length num_valid
• Set index to 0
• For each num in the original list:

• If num is valid
• Assign num to copyNum[index]
• Increase index by 1

Copy-over algorithm

0 21 19 0 18 19

- - - -

• Find the total number of valid elements in the list, and store in num_valid
• Create an empty list, called copyNum, of length num_valid
• Set index to 0
• For each num in the original list:

• If num is valid
• Assign num to copyNum[index]
• Increase index by 1

num_valid = 4

Copy-over algorithm

0 21 19 0 18 19

- - - -

X

Index = 0

• Find the total number of valid elements in the list, and store in num_valid
• Create an empty list, called copyNum, of length num_valid
• Set index to 0
• For each num in the original list:

• If num is valid
• Assign num to copyNum[index]
• Increase index by 1

num_valid = 4

Copy-over algorithm

0 21 19 0 18 19

21 - - -

• Find the total number of valid elements in the list, and store in num_valid
• Create an empty list, called copyNum, of length num_valid
• Set index to 0
• For each num in the original list:

• If num is valid
• Assign num to copyNum[index]
• Increase index by 1

Index = 1

num_valid = 4

Copy-over algorithm

0 21 19 0 18 19

21 19 - -

Index = 2

• Find the total number of valid elements in the list, and store in num_valid
• Create an empty list, called copyNum, of length num_valid
• Set index to 0
• For each num in the original list:

• If num is valid
• Assign num to copyNum[index]
• Increase index by 1

num_valid = 4

Copy-over algorithm

0 21 19 0 18 19

21 19 - -

X

Index = 2

• Find the total number of valid elements in the list, and store in num_valid
• Create an empty list, called copyNum, of length num_valid
• Set index to 0
• For each num in the original list:

• If num is valid
• Assign num to copyNum[index]
• Increase index by 1

num_valid = 4

Copy-over algorithm

0 21 19 0 18 19

21 19 18 -

Index = 3

• Find the total number of valid elements in the list, and store in num_valid
• Create an empty list, called copyNum, of length num_valid
• Set index to 0
• For each num in the original list:

• If num is valid
• Assign num to copyNum[index]
• Increase index by 1

num_valid = 4

Copy-over algorithm

0 21 19 0 18 19

21 19 18 19

Index = 4

• Find the total number of valid elements in the list, and store in num_valid
• Create an empty list, called copyNum, of length num_valid
• Set index to 0
• For each num in the original list:

• If num is valid
• Assign num to copyNum[index]
• Increase index by 1

num_valid = 4

Copy-over algorithm

• Running time:
• The first step is order n, since we need to iterate through all elements in the list to count

the number of valid elements. For each element, there is a constant number of
operations. (More details for this step are required, but this likely would use a for loop).

• The main work then occurs in the for loop on the 4th line, which is also order n. For each
element, we either copy it or not, and this is also a constant number of operations for
each of the n elements.

• The running time is 𝜃 𝑛 , in the best, worst, and average cases.

• Find the total number of valid elements in the list, and store in num_valid
• Create an empty list, called copyNum, of length num_valid
• Set index to 0
• For each num in the original list:

• If num is valid
• Assign num to copyNum[index]
• Increase index by 1

Copy-over algorithm

• Space (depends on the number of valid elements):
• Best case: if there are no valid elements, then the space only requires the original

list, which is n (we ignore a few additional variables)
• Worst case: if all the elements are valid, we create an additional copy of the

original list. The space requirements are 2n.
• Average case: this depends on the expected number of valid/invalid items, and will

be between n and 2n. If the number of valid items is equally likely to be between
0, 1, 2, …n, then the average space requirement is 1.5n.

• Find the total number of valid elements in the list, and store in num_valid
• Create an empty list, called copyNum, of length num_valid
• Set index to 0
• For each num in the original list:

• If num is valid
• Assign num to copyNum[index]
• Increase index by 1

Converging pointers algorithm
• We keep a left and right index
• Set left to 0 and right to n – 1 (index of the last element)

• Set num_valid to the length of the numbers list
• While left < right
• If number[left] is valid :

• Increase left by 1
• Else (number[left] is not valid) :

• Copy number[right] to number[left]
• Decrease num_valid by 1
• Decrease right by 1

• If number[left] is not valid :
• Decrease num_valid by 1

Correction: this is after the while loop.

Converging pointers example

0 21 19 0 18 19

left right

Item at left is 0, so we copy from right to left, and decrease right and num_valid by 1.

num_valid = 6

Converging pointers example

19 21 19 0 18 19

left right

Item at left is not 0, so we increase left by 1

num_valid = 5

Converging pointers example

19 21 19 0 18 19

left right

Item at left is not 0, so we increase left by 1

num_valid = 5

Converging pointers example

19 21 19 0 18 19

left right

Item at left is not 0, so we increase left by 1

num_valid = 5

Converging pointers example

19 21 19 0 18 19

left right

Item at left is 0, so we copy from right to left, and decrease right and num_valid by 1.

num_valid = 5

Converging pointers example

19 21 19 18 18 19

left right

Item at left is not 0 (if it was, we would decrease num_valid).

Once left is equal to right, we are done

num_valid = 4

Converging pointers algorithm
• While left < right

• If number[left] is valid :
• Increase left by 1

• Else (number[left] is not valid) :
• Copy number[right] to number[left]
• Decrease num_valid by 1
• Decrease right by 1

• If number[left] is not valid :
• Decrease num_valid by 1

• Running time:
• The main work occurs in the while loop. The loop always increases left or

decreases right, until left and right are the same. This can only happen n times. All
other operations inside the loop are constant, so the running time is 𝜃 𝑛 , which
is true for the best, worst, and average cases.

• Space: n (we need space only for the original list, as well as a few
additional terms). This is the most space efficient algorithm

Correction: this is after the while loop.

Data Cleanup Algorithms

Shuffle-left Copy over Converging Pointers

Time Space Time Space Time Space

Best 𝜃 𝑛 𝑛 𝜃 𝑛 𝑛 𝜃 𝑛 𝑛
Worst 𝜃 𝑛! 𝑛 𝜃 𝑛 2𝑛 𝜃 𝑛 𝑛

Average 𝜃 𝑛! 𝑛 𝜃 𝑛 (𝑛, 2𝑛) 𝜃 𝑛 𝑛

• Which algorithm is the best?

