Binary Numbers and Machine Representation of Data

Garrett Dancik, PhD
Fall 2021

Course Notes: https://gdancik.github.io

Bigger Picture

In [1]: $\begin{aligned} & \mathrm{x}=1+2 \\ & \mathrm{x}\end{aligned}$
Out[1]: 3

Computer code

Digital Logic

The decimal number system

- Decimal number system:
- Base 10
- 10 digits ($0-9$), each digit represents a power of 10
- Example: 524

The binary number system

- Binary number system:
- Base 2
- 2 digits ($0-1$), each digit represents a power of 2
- Example: 101

Powers of 2

n	2^{n}
0	$2^{0}=1$
1	$2^{0}=2$
2	$2^{0}=4$
3	$2^{0}=8$
4	$2^{0}=16$
5	$2^{0}=32$
6	$2^{0}=64$
7	$2^{0}=128$
8	$2^{0}=256$

Binary conversion example:

Binary	1	0	1	1	0	0	1	1	0
	1×2^{8}	0×2^{7}	1×2^{6}	1×2^{5}	0×2^{4}	0×2^{3}	1×2^{2}	1×2^{1}	0×2^{0}
Calculation	256	0	64	32	0	0	4	2	0
Sum									

What is the following binary number in decimal: 1011

The hexadecimal number system

- Hexadecimal number system:
- Base 16
- 16 digits ($0-9, A-F$), each digit represents a power of 16
- Example: 101

Addition and Counting

Decimal:

$1 \leftarrow$ carry
$+\quad 18$
21

Binary Addition Rules:
$0+0=0$
$0+1=1$
$1+0=1$
$1+1=0$ (carry a 1)

Binary:

$$
\begin{aligned}
& 11 \\
& 1011 \\
& \frac{11}{1110}
\end{aligned}
$$

What is $1011+11$ in decimal notation?

	Decimal	Binary	Binary (Padded)
Counting:	0	0	000
	1	1	001
	2	10	010
	3	11	011
	4	100	100

Decimal	Binary	Hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Relationship between binary and hexadecimal

We can represent a binary number as hex by translating each group of 4 binary digits to its single hex value, moving from right to left

Binary	1	0	1	1	0	0	1	1	0
Hex	1	6						6	

We can therefore write the binary number 101100110 in hex as 166.

What is the following binary number in hex: 1010011110

Decimal to binary conversion

- Because a binary digit specifies a number as the sum of powers of 2 , we can continually divide by 2 , and use the remainder to determine the binary digit from right to left, stopping when the quotient is 0 .
- Intuition: If a decimal number N is even, then $N \% 2$ is 0 , and the last binary digit is 0 ; if N is odd, then $\mathrm{N} \% 2$ is 1 , and the last binary digit is 1 .
- Example: Find the binary representation of the number 13

Calculation	Quotient	Remainder	
$13 / 2$	6	1	In binary, the decimal
$6 / 2$	3	0	number 13 is:
$3 / 2$	1	1	1101
$1 / 2$	0	1	
Stop			Read reminders from last to first to get the binary number

Characters are represented on machines using binary

- A character (A, B @, 9,
, etc) value is displayed by interpreting the binary value using the specified encoding standard
- ASCII codes: https://www.rapidtables.com/code/text/ascii-table.html
- Uses 7 bits for each character ($2^{7}=128$ possible characters)
- https://mothereff.in/binary-ascii
- Unicode: https://www.rapidtables.com/code/text/unicode-characters.html
- Represents over 140,000 characters in many languages, and is encoded in different ways (the most common is UTF-8); encoding determines how characters are stored in binary
- Even though characters are stored as binary values on a computer, we often use unicode, hexadecimal or decimal values to specify them in a more human-readable way.

Prefixes for bits and bytes

- 1 bit can store 2 values (0 and 1)
- 1 byte $=8$ bits, and can store $2^{8}=256$ values (in general, n bits can store 2^{n} values)

Prefix (SI)	Decimal (SI)
kilo (k)	$1000^{1}=1,000$
mega(M)	$1000^{2}=1,000,000(1$ million $)$
giga (G)	$1000^{3}=1,000,000,000(1$ billion $)$
tera (T)	$1000^{4}=1,000,000,000,000(1$ trillion $)$

Prefix (IEC)	Binary	Prefix (Memory)
kibi (Ki)	$1024^{1}=1,000$	kilo (K)
mebi (Mi)	$1024^{2}=1,048,576$	mega (M)
gibi (Gi)	$1024^{3}=1,073,741,824$	giga (G)
tibi (Ti)	$1024^{4}=1,099,512,000,000$	tera (T)

- Storage considerations
- An audio file requires about 1 MB per minute of sound
- 1 full length movie is about 2 GB
- 1 GB can hold about 16 hours of music
- A photo (from an iphone) requires around 2 MB
- Over 1,000 photos are uploaded to Instagram every second (https://www.internetlivestats.com/one-second/\#instagram-band)
- This requires roughly 2 GB every second. If your computer has 1 TB of space, at this rate you would run out of memory in a little over 8 minutes.

Signed numbers (signed/magnitude notation)

- The left-most bit is used to represent the sign as positive (0) or negative (1).
- Suppose we use 4 bits for the signed number (1 sign bit, and 3 bits for the number). How many numbers can we store?

Sign bit							
Binary	1	1	0	1			
Calculation	-	1×2^{2}	0×2^{1}	1×2^{0}			
Sum				0			

Sign bit									
Binary	0	1	0	1					
Calculation	+	1×2^{2}	0×2^{1}	1×2^{0}					
Sum				0					

Problems with signed/magnitude notation

- There are two zeros, +0 and -0 (e.g., 1000 and 0000)
- This can cause problems if you need to check whether a value is 0 .
- Addition is more complicated, because it depends on the signs of the numbers
- For numbers with the same sign, add the numbers, ignoring the sign bit, then prepend the sign bit to the answer.
- But this does not work if numbers have different signs

Sign bit	1	1		Decimal
1	0	1	1	-3
1	0	0	1	-1
1	1	0	0	-4

Carry bit

Sign bit	1	1		Decimal
1	0	1	1	-3
0	0	1	1	+3
$?$	1	1	0	0

Two's complement

- Most common representation of signed integers
- The sum of a number and its two's complement is 2^{N}, where $\mathrm{N}=$ number of bits
- Assuming 4 bits, the two's complement of 0011 is 1101 because they sum to 10000 (which is 2^{4})

Carry bit	1	1	1	1	
	0	0	0	1	1
	0	1	1	0	1
	1	0	0	0	0

https://cs.carleton.edu/faculty/awb/cs208/s20/topics/topic5.htm

- For positive numbers, use standard binary representation
- For negative numbers, use the two's complement of the positive value, which can be found by inverting the number (flipping from 0 s to 1 s and viceversa), and adding 1

Two's complement

- Find the two's complement of +3 (0011)

Number	0	0	1	1
Invert	1	1	0	0
Add One	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$

The two's complement of $0011(+3)$ is $1101(-3)$

- Addition of bits works for positive and negative numbers!

Extra carry bit is ignored	Carry bit				
1	1	1	1		Decimal
	0	0	1	1	+3
	1	1	0	1	-3
1	0	0	0	0	0

- For N bits, two's complement provides a range of numbers between $-2^{\mathrm{N}-1}$ and $2^{\mathrm{N}}-1$
- In Java, an int (integer) type uses 4 bytes (32 bits) of memory and stores integers in the range $-\left(2^{31}\right)$ and $2^{31}-$ 1 , which is between

$$
-2,147,483,648 \text { and } 2,147,483,647
$$

