Algorithm Discovery & Design

Garrett Dancik, PhD Fall 2024

Course Notes: https://gdancik.github.io

Computer Science & Algorithms

- An algorithm is a step-by-step set of instructions for solving a task
- Computer Science is the study of algorithms, including
 - their formal and mathematical properties Is it correct? How long does it take?
 - their hardware realizations

How can we design and build a computer to carry out it?

• their linguistic realizations

How can we design and use programming languages to implement them?

• their applications

What software can be developed? Operating Systems? Databases? AI? The Internet?

Example Algorithm (not great)

- Algorithm for Shampooing your Hair
 - Step 1: Wet your hair
 - Step 2: Lather
 - Step 4: Repeat

But this is is not a good algorithm:

- Step 4 is ambiguous (it is not clear what statements should be repeated, nor how many times)
- Step 1 may be clarification (how "wet" does our hair need to be)
- Step 2 may need clarification (how do we "lather")

Algorithm: more precise definition

 An algorithm is a well-ordered collection of <u>unambiguous</u> and <u>effectively computable</u> operations that, when executed, <u>produces a result</u> and <u>halts in a finite amount of time</u>.

A correct solution to the shampooing problem

Step	Operation
1	Wet your hair
2	Set the value of WashCount to 0
3	Repeat Steps 4 through 6 until the value of WashCount equals 2
4	Lather your hair
5	Rinse your hair
6	Add 1 to the value of WashCount
7	Stop, you have finished shampooing your hair

Note: If any step is not "computable", more information could be provided:

Step 4: Lather your hair

- 4.1. Apply 2 teaspoons of shampoo to the palm of your hand
- 4.2. Rub your hands together to create a lather (with visible bubbles)
- 4.3 Use the tips of your fingers to massage the shampoo into your scalp, for 1 3 minutes

Another correct solution to the shampooing problem

Step	Operation
1	Wet your hair
2	Lather your hair
3	Rinse your hair
4	Lather your hair
5	Rinse your hair
6	Stop, you have finished shampooing your hair

There will *always* be more than one algorithm for a problem, but some may be

- More readable
- Easier to change
- More efficient (are quicker to complete)

Pseudocode

- Pseudocode consists of English language constructs that resemble computer code, but that does not run on a computer. It is a compromise between natural language (which can be wordy and imprecise) and computer code (which may be too detailed).
- We start with three sequential operations (each operation performs a single, well-defined task)
 - Computation: set a variable (a named storage location) to the value of an expression
 - total \leftarrow x + y. (set total to the sum of x and y; x and y would need to have values)
 - Input: get data values from outside the program (from a file, from a sensor, from the keyboard)
 - Get values for "x" and "y"
 - Output: Send results to the outside world (the screen or display)
 - Print the values of "x" and "y"

Representing Algorithms Sequential Algorithm

FIGURE 2.3

Step	Operation
1	Get values for gallons used, starting mileage, ending mileage
2	Set value of <i>distance driven</i> to (ending mileage - starting mileage)
3	Set value of average miles per gallon to (distance driven ÷ gallons used)
	Print the value of average miles per gallon
5	Stop

Algorithm for computing average miles per gallon

CENGAGE

Representing Algorithms Sequential Algorithm

FIGURE 2.3

Step	Operation
1	Get values for gallons used, starting mileage, ending mileage
2	Set value of <i>distance driven</i> to (ending mileage - starting mileage)
3	Set value of average miles per gallon to (distance driven ÷ gallons used)
	Print the value of <i>average miles per gallon</i>
5	Stop

Step	Operation
1	gallons used \leftarrow get value from user
2	starting mileage ← get value from user
3	ending mileage ← get value from user
4	distance ← ending mileage – starting mileage
5	average miles per gallon \leftarrow distance driven / gallons used
6	Print average miles per gallon
7	Stop

Algorithm for computing average miles per gallon (notation on right is more common)

CENGAGE

Example

• What is an algorithm for converting a number in *meters* to a number in *yards*? (Note: in the 2024 Olympics, USA sprinter set a world record of 9.79 seconds for the 100m). There are 1.093613 yards in a meter.

Conditional Statements

Control operations

- changes the normal flow of control, which is linear.
- Include conditional and iterative statements

Conditional statement: asks a question and selects among alternative options:

- 1. Evaluate the true/false condition
- 2. If the condition is true, then do the first set of operations and skip the second set
- 3. If the condition is false, skip the first set of operations and do the second set

Example: check for good or bad gas mileage

The if/then/else pseudocode statement

An Algorithm with a Conditional Statement

Problem: check for good or bad gas mileage. We consider 25 or more *mpg* to be good.

FIGURE 2.5

Step	Operation
1	Get values for gallons used, starting mileage, ending mileage
2	Set value of distance driven to (ending mileage – starting mileage)
3	Set value of average miles per gallon to (distance driven ÷ gallons used)
4	Print the value of average miles per gallon
5	If average miles per gallon is $>$ 25.0 then
6	Print the message 'You are getting good gas mileage'
	Else
7	Print the message 'You are NOT getting good gas mileage'
8	Stop

Second version of the average miles per gallon algorithm

Iterations

An iteration is an operation that causes looping, which repeats a block of instructions

While statement repeats while a condition remains true

- **Continuation condition**: a test to see if while loop should continue
- Loop body: instructions to perform repeatedly

Example: repeated mileage calculations

Execution of the while loop

An Algorithm with Iteration and Loop Body

Problem: check for good or bad gas mileage, as many times as the user wants. We consider 25 or more mpg to be good.

FIGURE 2.7

Step	Operation
1	response = Yes
2	While (<i>response</i> = Yes) do Steps 3 through 11
3	Get values for gallons used, starting mileage, ending mileage
4	Set value of distance driven to (ending mileage – starting mileage)
5	Set value of average miles per gallon to (distance driven ÷ gallons used)
6	Print the value of average miles per gallon
7	If average miles per gallon > 25.0 then
8	Print the message 'You are getting good gas mileage'
	Else
9	Print the message 'You are NOT getting good gas mileage'
10	Print the message 'Do you want to do this again? Enter Yes or No'
11	Get a new value for <i>response</i> from the user
12	Stop

Third version of the average miles per gallon algorithm

Examples of Algorithmic Problem Solving: Sequential Search

Problem: Determine the name associated with a given phone number.

Let $T_1...T_{10,000}$ represent 10,000 phone numbers in a database

Let $N_1...N_{10,000}$ represent the 10,000 names corresponding to the 10,000 phone numbers

FIGURE 2.13

Step	Operation
1	Get values for NUMBER, T ₁ ,, T _{10,000} , and N ₁ ,, N _{10,000}
2	Set the value of <i>i</i> to 1 and set the value of Found to NO
3	While both (Found = NO) and ($i \le 10,000$) do Steps 4 through 7
4	If NUMBER is equal to the ith number on the list T, then
5	Print the name of the corresponding person, N
6	Set the value of Found to YES
	Else (NUMBER is not equal to T_i)
7	Add 1 to the value of <i>i</i>
8	If (Found = NO) then
9	Print the message 'Sorry, this number is not in the directory'
10	Stop

The sequential search algorithm

Example

• Find the maximum of 2 numbers

• Find the maximum of 10,000 numbers