
Additional Circuits
(Sub-circuits, Comparators and Adders)

Garrett Dancik, PhD
Fall 2021

Course Notes: https://gdancik.github.io

https://gdancik.github.io/

Sub-circuits
• Sub-circuits are self-contained circuits that can be reused

• A sub-circuit is denoted with a box having one or more inputs and outputs, and behaves like a
"black box" that carries out an operation.

• The above circuit implements a > b, where a and b are each 1 bit.
• Can you design a circuit that outputs a > b when a and b are each 2 bits, denoted as a1a2 and b1b

• Note that a > b if either of the following are TRUE
• a1 > b1
• NOT a1 > b1 AND a2 > b2

Constructing a circuit using sub-circuits

• A circuit for the 1 bit comparison of a > b is available here:
• https://circuitverse.org/users/89029/projects/a-gt-b-1-bit

• In CircuitVerse, use this circuit to implement the following Boolean expression,
which outputs 1 if a > b and outputs 0 otherwise, where a and b are each 2 bits.

• (a1 > b1) OR (NOT a1 > b1 AND a2 > b2)

• To do this, fork the above circuit, then select Circuit à New Circuit. Give the new
circuit an appropriate name (like "a > b (2 bits)"). Then select Circuit à Insert
SubCircuit, and select the "a > b" circuit. This sub-circuit is a "black box" that has
2 inputs (a and b) and outputs the value of a > b. Use as many sub-circuits as
necessary to implement the above expression.

https://circuitverse.org/users/89029/projects/a-gt-b-1-bit

A circuit can have multiple outputs

• Example: Single bit magnitude comparator
• Outputs:
• L: a < b (a is less than b)
• E: a = b (a is equal to b)
• G: a > b (a is greater than b)

Inputs Outputs

a b L: a < b E: a = b G: a > b

1 1 0 1 0

1 0 0 0 1

0 1 1 0 0

0 0 0 1 0

Boolean expressions

L = NOT a AND b
E = NOT L AND NOT G [we could also use (a AND b) OR (NOT a AND NOT b)
G = a and NOT b

Circuit for single bit magnitude comparator

https://circuitverse.org/users/89029/projects/single-bit-magnitude-comparator-9d0c3438-7d7a-4862-841f-038685045510

https://circuitverse.org/users/89029/projects/single-bit-magnitude-comparator-9d0c3438-7d7a-4862-841f-038685045510

Circuits for adding numbers:
Truth table for a half-adder

Binary
addition:

1011
11

1110

11 ß carry
Inputs Outputs

a b S (Sum) Cout (Carry output)

1 1 0 1

1 0 1 0

0 1 1 0

0 0 0 0

S = a XOR b
Cout = a AND b

Half-adder truth table for adding two binary digits

The half-adder has two inputs (sometimes called the augend
and addend) and two outputs, one for the sum (S) and one for
the carry (Cout).

Unlike the full adder (next page), the half adder does not have
an input for any previous carry.

Boolean expressions:

Truth table for a full-adder

Inputs Outputs

a b Cin S Cout

1 1 1 1 1

1 0 1 0 1

0 1 1 0 1

0 0 1 1 0

1 1 0 0 1

1 0 0 1 0

0 1 0 1 0

0 0 0 0 0

Full-adder truth table for adding two binary digits

The full adder has an input for the previous carry bit (Cin)

Cout = a AND Cin OR b AND Cin OR a AND b

S = a XOR b XOR Cin

The sum is 1 if only one input is 1 or if all inputs are 1. This
can be captured by XOR across all inputs.

The carry is 1 if at least 2 inputs are 1. We can therefore
use AND to check each pair of inputs.

https://circuitverse.org/users/89029/projects/full-adder-9ea5e811-4d30-41d3-8652-8d5f2e7941d1

https://circuitverse.org/users/89029/projects/full-adder-9ea5e811-4d30-41d3-8652-8d5f2e7941d1

Chaining adder circuits for addition of multi-
bit numbers

• https://circuitverse.org/users/89029/projects/2-bit-adder-1d2c96f2-834b-48d9-889f-16d7e36e1951

https://circuitverse.org/users/89029/projects/2-bit-adder-1d2c96f2-834b-48d9-889f-16d7e36e1951

