Additional Circuits
 (Sub-circuits, Comparators and Adders)

Garrett Dancik, PhD
Fall 2021

Course Notes: https://gdancik.github.io

Sub-circuits

- Sub-circuits are self-contained circuits that can be reused
- A sub-circuit is denoted with a box having one or more inputs and outputs, and behaves like a "black box" that carries out an operation.

- The above circuit implements $a>b$, where a and b are each 1 bit.
- Can you design a circuit that outputs $a>b$ when a and b are each 2 bits, denoted as $a_{1} a_{2}$ and $b_{1} b$
- Note that $a>b$ if either of the following are TRUE
- $a_{1}>b_{1}$
- NOT $a_{1}>b_{1}$ AND $a_{2}>b_{2}$

Constructing a circuit using sub-circuits

- A circuit for the 1 bit comparison of $a>b$ is available here:
- https://circuitverse.org/users/89029/projects/a-gt-b-1-bit
- In CircuitVerse, use this circuit to implement the following Boolean expression, which outputs 1 if $a>b$ and outputs 0 otherwise, where a and b are each 2 bits.
- $\left(a_{1}>b_{1}\right)$ OR (NOT $a_{1}>b_{1}$ AND $\left.a_{2}>b_{2}\right)$
- To do this, fork the above circuit, then select Circuit \rightarrow New Circuit. Give the new circuit an appropriate name (like "a >b (2 bits)"). Then select Circuit \rightarrow Insert SubCircuit, and select the "a >b" circuit. This sub-circuit is a "black box" that has 2 inputs (a and b) and outputs the value of $a>b$. Use as many sub-circuits as necessary to implement the above expression.

A circuit can have multiple outputs

- Example: Single bit magnitude comparator
- Outputs:
- L: $a<b$ (a is less than b)
- $\mathrm{E}: a=b$ (a is equal to b)
- G: $a>b$ (a is greater than b)

Inputs		Outputs		
a	b	$\mathrm{L}: \mathrm{a}<\mathrm{b}$	$\mathrm{E}: \mathrm{a}=\mathrm{b}$	$\mathrm{G}: \mathrm{a}>\mathrm{b}$
1	1	0	1	0
1	0	0	0	1
0	1	1	0	0
0	0	0	1	0

Boolean expressions

$\mathrm{L}=\mathrm{NOT} a \mathrm{AND} b$
$\mathrm{E}=\mathrm{NOT} L$ AND N
$\mathrm{G}=a$ and NOT b
$\mathrm{E}=$ NOT L AND NOT $G \quad[$ we could also use (a AND b) OR (NOT a AND NOT b)

Circuit for single bit magnitude comparator

Circuits for adding numbers: Truth table for a half-adder

Half-adder truth table for adding two binary digits

Inputs		Outputs	
a	b	$\mathrm{S}($ Sum $)$	Cout (Carry output)
1	1	0	1
1	0	1	0
0	1	1	0
0	0	0	0

Binary addition:

Boolean expressions:

$$
\begin{aligned}
& \mathrm{S}=a \mathrm{XOR} b \\
& \text { Cout }=a \text { AND } b
\end{aligned}
$$

The half-adder has two inputs (sometimes called the augend and addend) and two outputs, one for the sum (S) and one for the carry (Cout).

Unlike the full adder (next page), the half adder does not have an input for any previous carry.

Truth table for a full-adder

Full-adder truth table for adding two binary digits

Inputs			Outputs	
a	b	Cin	S	Cout
1	1	1	1	1
1	0	1	0	1
0	1	1	0	1
0	0	1	1	0
1	1	0	0	1
1	0	0	1	0
0	1	0	1	0
0	0	0	0	0

The sum is 1 if only one input is 1 or if all inputs are 1 . This can be captured by XOR across all inputs.
$S=a \operatorname{XOR} b \operatorname{XOR} \mathrm{Cin}$

The carry is 1 if at least 2 inputs are 1 . We can therefore use AND to check each pair of inputs.

Cout $=a$ AND Cin OR b AND Cin OR a AND b

The full adder has an input for the previous carry bit (Cin)

Full Adder with
Sum - a XOR b XOR Cin
Cout - a AND b OR a AND Cin OR b AND Cin

Chaining adder circuits for addition of multibit numbers

- https://circuitverse.org/users/89029/projects/2-bit-adder-1d2c96f2-834b-48d9-889f-16d7e36e1951

