CSC 180, Lab #7 Fall 2021

Directions: Turn in a hard copy of this assignment, with your answers written on this or another sheet of paper, as well as the completed Jupyter Notebook that goes with this lab.

- 1. In class, we learned that a formula for adding the integers between 1 and *n* is given by the following: n(n + 1)/2. Using this formula [5 points]
 - a. Find the sum of the integers between 1 and 50
 - b. Find the sum of the integers between 1 and 70
- 2. The code below contains two algorithms for determining whether a word is in a list of words [9 points]

```
set wordFound to False
for w in words :
    if w == word :
        set word_found to True
if wordFound == True :
    print 'word found!'
```

Assume that the length of the word list is *n*.

- a) Assuming that the word is in the list, how many operations are required by the algorithm? Note: Count the following as single operations: assignment, comparison, and printing; the statement *for w in words* should count as a <u>two</u> operations, which is repeated *n* times.
- b) What is the order of magnitude of this algorithm, using Big Theta notation?
- c) What is the space requirement for this algorithm (this includes the list, which is *n*)?

3. Consider the list containing 3, 0, 1, 0, and 7, and complete the table below to specify the values of *position*, *num_valid* and the list after each iteration of the *while* loop in the *shuffle left* algorithm. [6 points]

	position	num_valid	List					
Original list	0	5	3	0	1	0	7	
After iteration 1	1							
After iteration 2	1							
After iteration 3	2							
After iteration 4	2							
After iteration 5 (final)	3							

4. Consider the list containing 3, 0, 1, 0, and 7, and complete the table below to specify the value of the *copyList* after each iteration of *for* loop in the *copyOver* algorithm. [6 points]

copyList	-	-	-
After iteration 1			
After iteration 2			
After iteration 3			
After iteration 4			
After iteraton 5			

5. Consider the list containing 3, 0, 1, 0, and 7, and complete the table below to specify the values of *left*, *right*, *num_valid*, and the *list* after of the *copyList* after each iteration of the *while* loop in the *converging pointers* algorithm. [6 points]

	Left	Right	num_valid	List				
Original list	0	4	5	3	0	1	0	7
After iteration 1								
After iteration 2								
After iteration 3								
After iteration 4 (final)								

After the final iteration, number[left] is not valid, so *num_valid* is decreased by 1. The algorithm is now complete. There are 3 valid elements and the first 3 elements of the list should be 3, 7, and 1.