CSC 180, Exam III

Exam III Notes

- You may bring one page of notes (front and back) to the exam. This page may be handwritten or typed.
- Computer access will not be permitted during the exam.
- Cell phones must be put away at all times - but you may use calculators
- Don't hesitate to contact me if you have any questions!

Exam III Concepts

- Running time, Number of Operations, and Big Theta notation
- $\theta(1)$ vs. $\theta\left(\log _{2} n\right)$ vs $\theta(n)$ vs $\theta\left(n^{2}\right)$ vs $\theta(n!)$, etc
- Cleanup Algorithms and their running times
- Shuffle-left
- Copy-over
- Converging pointers
- Searching Algorithms and their running times
- Sequential Search
- Binary search
- Sorting Algorithms and their running times
- Select sort
- Quicksort
- The Traveling Salesman Problem and it's running time
- Fundamental Counting Rule
- Heuristic for the Traveling Salesman problem and it's running time

Practice Problems

1. The algorithm below uses a while loop to count the number of times the number 7 appears in a list. Find the total number of operations (assignments, additions, comparisons, and print statements) that are executed and the order of magnitude (theta notation) for the running time under the following scenarios:
a. The number 7 does not appear in the list
b. The number 7 appears 1 time in the list
c. Every element in the list is the number 7
```
n}\leftarrowl\mp@code{length of the list
index \leftarrow }
count \leftarrow0
while index < n :
    if mylist[index] == 7 :
        count \leftarrow count + 1
    index < index + 1
Output the count
```

For questions $2-4$, use the given clean up algorithm to clean up the following list: $[1,0,2,0,4,0]$. Note that a 0 is an invalid value. Then repeat questions $2-4$ for the list: $[0,3,4,0,2,6]$
2. After each iteration of the Shuffle left algorithm, state the following:
a. The value of num_valid
b. The elements in the list
3. In the Copy-over algorithm, we first iterate through each element of the list and count the number of valid elements, which is num_valid $=3$ for the first list. After each iteration of the second loop, state the elements that are in the copy list.
4. After each iteration of the Converging pointers algorithm, state the following:
a. The values of left and right
b. The value of num_valid
c. The values in the list
5. Consider the list containing the integers: $1,3,4,5,7,8,9,10,11$
a. Show the binary search tree for this list
b. What is the maximum number of comparisons that are needed to determine whether or not a number is in the list
c. If sequential search were used, what would the maximum number of comparisons be?

For questions 6-7, use the specified sorting method to put the elements in sorted order (from smallest to largest): $[19,20,3,2,6,10,9]$. Then repeat these questions using the list: $[13,8,4,5,9,1]$. Note: you should check your answers using the Practice Notebook under Sorting Algorithms in the Notes section.
6. Use selection sort to sort the given list. For each iteration of the loop, state the following:
a. The maximum number found
b. The two values that are swapped
c. The updated list after the elements are swapped
7. Use quicksort to sort the given list. Create a binary tree that shows the following, similar to the trees in pages 16-17 of the notes:
a. The list being looked at
b. The list after all swaps from the partition algorithm
8. For the Traveling Salesman problem, how many ways are there to visit 6 different cities before returning home?
9. Using the nearest city heuristic for the Traveling Salesman problem, find the route to visit the cities labeled A - E in the image below. How many comparisons are needed for this heuristic?

