
The MapReduce framework
Dr. Garrett Dancik

Map Reduce background
• Based on a Google paper:

• https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf

• MapReduce provides the original processing engine for
Hadoop, that allows for parallel processing of data in a
cluster

• Hadoop is built on Java, but you do not need to write Java
programs to use Map Reduce, though Java programs will
be faster.

https://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf

Map Reduce Overview and Word Count Example

Image source: https://www.edupristine.com/blog/hadoop-mapreduce-framework

Steps of a MapReduce Job
1. Hadoop divides the data into input splits, and creates

one map task for each split.
2. Each mapper reads each record (each line) of its input

split, and outputs a key-value pair
3. Output from the mappers are transferred to reducers as

inputs, such that the input to each reducer is sorted by
key.

4. The reducer processes the data for each key, and
outputs the result. The reducer is optional.

MapReduce data flow with a single reduce task

Image from White, T. (2015). Hadoop: The definitive guide. Sebastopol, CA: OReilly.

Here, mappers process data on 3
nodes in parallel. Results are sent
across the cluster to one or more
reducers

An optional combiner function can
be specified to process the output
from each map task before being
sent to the reducer

Pseudocode for word count mapper and reducer

is, 1
that, 2
well, 1

well, 1
that, 1
is, 1
that, 1

is, (1)
that, (1,1)
well, (1)

key, values

well that is that

value

Dean, J., Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters, (2004).
OSDI'04: Sixth Symposium on Operating System Design and Implementation, pgs 137-150.

Some Additional MapReduce Applications

Dean, J., Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters, (2004).
OSDI'04: Sixth Symposium on Operating System Design and Implementation, pgs 137-150.

MapReduce Streaming
• MapReduce jobs were originally written in Java

• MapReduce in Java is the most efficient
• For word count example, see:

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
• We will use Hadoop MapReduce Streaming

• Uses Unix/Linux input and output streams as interface with Hadoop
• Map input data is passed over standard input to the map function
• Map output is a tab-separated key,value pair…
• …which is passed to the reducer over standard input
• The reduce function reads lines from standard input, sorted by key
• Any language can be used (we will use Python)

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

Running a Map Reduce Streaming Job

hadoop jar /usr/jars/hadoop-streaming-2.6.0-cdh5.7.0.jar \
-mapper "python3.4 $PWD/mapper.py" \
-reducer "python3.4 $PWD/reducer.py" \
-input "inputFiles" \
-output "outputDirectory"

• You may monitor jobs from localhost:8088 (for some links, you
will need to replace quickstart.cloudera with localhost). Some
links also require mapping of additional ports.

• The mapred terminal command may also be useful:
• mapred job -list (list jobs)
• mapred job –kill jobID (kill job with jobID)

More background and additional options:
https://hadoop.apache.org/docs/r1.2.1/streaming.html

https://hadoop.apache.org/docs/r1.2.1/streaming.html

