
CSC 343: Big Data Programming and Management
Lab #4: MapReduce

For this lab, you will develop several Map and Reduce scripts in Python and use Hadoop
streaming to process data stored on HDFS. You will turn in hard copies of your map and
reduce scripts, and will push an image for this lab to Docker Hub. The name of the image
must be in the format gdancik/cloudera:lab4 and must contain the files and folders
indicated below. Note that you can add a tag to an existing image by using a command like

docker tag gdancik/cloudera gdancik/cloudera:lab4

Note: It is recommended that you periodically save your work, by using docker commit to
create a new image from a current container, after data is added or after map reduce jobs
are run. In the event that a MapReduce job ‘freezes’, or a connection to HDFS is lost,
creating a new container from a most recently saved image is recommended.

1. Lab Setup. Create a new container from the gdancik/cloudera image, that is running

Hadoop, and copy the following directories to HDFS:
a. Copy the WizardOfOz directory to hdfs://user/cloudera/WizardOfOz
b. Copy the customers directory to hdfs://user/cloudera/customers

2. Word Length. Create MapReduce python scripts that will organize words by length. In

order to do this, write a mapper script that emits length, word pairs for every word in its
input. The reducer then accumulates sets of words for each length. The final output
should be in the form length: word set, where length is the length of a word and word
set is a comma separated list of unique words (see piazza post for more information
about Python sets).

Note #1: To accurately organize words, convert all words to lowercase and remove all
punctuation. See the piazza post for how to do this correctly.

Note #2: When running Map Reduce, the default ‘comparator’ used for sorting assumes
character data (e.g., ‘11’ will be before ‘2’, since this is true alphabetically). To sort
numerically, add the following two options to the Hadoop streaming command, which
specifies to sort numerically in reverse order (so the longest words will be at the top of
the results):

-jobconf mapred.output.key.comparator.class=org.apache.hadoop.mapred.lib.KeyFieldBasedComparator
-jobconf mapred.text.key.comparator.options=-nr

Note that for testing locally, add the -h option to the linux sort command so that a
human-numeric-sort is used, e.g. the full command for testing will be similar to

cat files | python3.4 mapper.py | sort -h | python3.4 reducer.py

Store your mapper and reducer files in the directory /home/cloudera/wordlength, use
Hadoop streaming to run a Map Reduce job on the Wizard Of Oz data set, and store
your output in /user/cloudera/output/wordlength.

For the remaining questions, you will process a customers data set. Each file is a tab-delimited
file with columns corresponding to the following:

- the id of each customer
- the first name of the customer
- the last name of the customer
- the customer’s e-mail address (hidden)
- the customer’s password (hidden)
- the customer’s street
- the customer’s city
- the customer’s state
- the customer’s zip code

3. Look-up customers by state. Use Hadoop streaming to output all customers from CT,

sorted alphabetically by last name. Output should consist of the entire row. Your
mapper and reducer code should be stored in /home/cloudera/customers_CT and your
output should be stored in /user/cloudera/output/customers_CT.

4. Count customers by state. Use Hadoop streaming to find the number of customers from
each state. Your final output should be in the form of state: number_of_customers. Your
mapper and reducer code should be stored in /home/cloudera/count_by_state and your
output should be stored in /user/cloudera/output/count_by_state.

Note: for parts (3) and (4), you are implementing standard database query operations using
MapReduce. For those familiar with SQL, you are implementing the following queries:

query for (3)
select * from customers WHERE state = "CT" ORDER BY lname;

query for (4)
select state, count(*) from customers GROUP BY state;

