
1

CSC 343, Final Project
Spring 2019

This course has covered various aspects of the Hadoop ecosystem, including Map Reduce, Hive/Impala, and
Spark, which are frameworks or tools for processing and analyzing large distributed datasets stored on HDFS.
For your Final Project, you will select one of these frameworks or tools to either analyze a dataset of your
choice or to gain experience with a new technology.

If analyzing a dataset, you can pick any dataset that is of interest to you, as long as it allows you to answer
interesting questions. Many datasets are available from the links below:

1. https://www.kaggle.com/datasets
2. http://rs.io/100-interesting-data-sets-for-statistics/

Let me know if you need help finding a dataset.

1. Use the Oozie workflow schedule system to chain two Map Reduce jobs using Hadoop Streaming. The
first job counts the total number of words in a directory, for words that are at least 4 characters long, and
the second job sorts these words from most common to least common, with your final output in the form
word: count. To set up an Oozie workflow, the easiest option is to use Hue, and select Workflows à
Editors à Workflows and then the Create button to create a new workflow. Note that the jar file to run
Map Reduce is /usr/jars/hadoop-streaming-2.6.0-cdh5.7.0.jar, and this needs to be moved to HDFS.
For this option, you will turn in a docker image appropriate configured so that the workflow can be
executed.

2. Analyze a dataset of your choice using Impala. The dataset must contain at least one partitioned table,
at least two aggregate queries (e.g., count or average) over all records, and at least two aggregate queries
over different groups. For this option, you will turn in the following: 1) a docker image with data
uploaded and a script containing queries that can be executed using the Impala shell (impala shell -f
queries.sql), 2) the Data Definition Language (DDL) script, which contains SQL for creating all tables,
3) a report, approximately 1 page, that describes the dataset used, the structure of the database, and what
you have learned from your analysis of it. Information about partitioning:
https://www.cloudera.com/documentation/enterprise/latest/topics/impala_partitioning.html

3. Analyze a dataset of your choice using PySpark. The dataset must contain at least two ‘tables’, and

your analysis must contain at least two aggregate transformations using a pair RDD. Persistence should
be used so that the same RDD is not created more than once. Your code must also generate at least two
graphs, which is perhaps most easily accomplished using the pandas module. Pandas Data Frames can
be used to turn a dictionary into a data frame (a table), where the keys of the dictionary become columns
of the table. For barplot examples, see: https://tinyurl.com/y2gzglrd. For this option, you will turn in the
following: (1) a zip file of your data, (2) your PySpark script, and (3) a report, at least one page long,
that describes the dataset used and what you have learned from your analysis of it, including graphs
generated from your analysis.

4. Complete Lab #10 using Scala, which is an object-oriented and functional programming language that is

commonly used with Spark. Scala runs on the Java Virtual Machine (JVM), and compared to PySpark is
more efficient and safer (https://www.kdnuggets.com/2018/05/apache-spark-python-scala.html) . A brief
Scala tutorial is available here: https://docs.scala-lang.org/tutorials/tour/basics.html.html

2

a. You can access Scala from the gdancik/cloudera image by typing spark-shell at the command
line. This will open the Scala shell that includes a SparkContext object named sc.

b. Scala distinguishes between values and variables. Values are immutable and cannot be re-
assigned; variables are not immutable and can be reassigned (see tutorial for details)

c. Anonymous functions are defined using the following syntax:
• Python syntax: lambda x: x + 1
• Scala syntax: (x:Int) => x + 1

d. Spark operations are generally the same between PySpark and Scala, as demonstrated in the
example below:

// create a list
val l = List(1,2,3,4)

// create RDD from list and apply map to increase values by 1
val rdd = sc.parallelize(l).map((x:Int) => x + 1)

// return RDD elements as an Array
rdd.collect()

5. You may choose another specialized Hadoop- or Big Data-related analysis, with my approval.

Additional Information
See the accompanying rubric for additional information.

