
CSC 343, Exam I Review

Exam I Notes

• You may bring one page of notes (front and back) to the exam. This page may be
handwritten or typed.

• Computer access will not be permitted during the exam.
• Cell phones must be put away at all times.
• Don't hesitate to contact me if you have any questions!

Exam I Outline

• Docker
o Create a container from an image and execute a command
o Create a new image from a container
o Copy files to/from a container
o Mount a directory to a container

• Linux
o File navigation: listing files/directories, changing to a directory
o Making a directory
o Copying, removing, and moving files/directories
o Viewing the contents of 1 or more files
o The wordcount command
o File redirection and pipes
o Wildcards and globbing

• HDFS
o Filestorage concepts: Blocks, Namenode vs. datanode
o Accessing HDFS from the command line

§ Listing files
§ Making directories
§ Copying files to/from/within HDFS
§ Viewing contents of files on HDFS

• Python
o Basic concepts – printing, if-else statements, for loops
o Lists, strings, and slicing

• MapReduce and Hadoop MapReduce Streaming
o Mapper input/output
o Reducer input/output
o Writing a mapper and reducer in Python

Exam I Practice

1. In a single docker command, create a container from the centos image that lists the files
that are in the /tmp directory

2. Copy the files from the /tmp directory of this container to a folder named container on
the desktop of your computer

3. Create a container from the centos image such that your desktop directory is mounted
to /home/desktop

4. Create a container from the centos image and do the following:
a. Create the files file1.txt, file2.txt, and file3.txt (their content is up to you)
b. Use globbing to list all .txt files
c. Remove file3.txt
d. Find the total number of combined lines in file1.txt and file2.txt. Your output

should include only the combined total. For example, if there are two lines in
file1.txt and 3 lines in file2.txt, your output should consist of only the number 5.

5. Create the HDFS directory hdfs:/user/cloudera/practice
6. Using the command line, copy the files file1.txt and file2.txt to

hdfs:/user/cloudera/practice/
7. Using the command line, list the files in hdfs:/user/cloudera/practice/
8. Using the command line, display the contents of hdfs:/user/cloudera/practice/file1.txt
9. Using the command line, find the number of lines in

hdfs:/user/cloudera/practice/file1.txt
10. Will your commands in (7) – (9) work if the NameNode was running, but the DataNode

was not? Why or why not? What if the DataNode was running but the NameNode was
not? Note, you can start and stop the NameNode and DataNode using the commands

stop namenode and datanode
service hadoop-hdfs-namenode stop
service hadoop-hdfs-datanode stop

start namenode and datanode
service hadoop-hdfs-namenode start
service hadoop-hdfs-datanode start

11. Within a mapper, the code below can be used to get the name of the file being read

from standard input. Note that the if statement is used to set fileName to “unknown” if
Hadoop Streaming is not being used (e.g.., if testing using cat file | python3.4
mapper.py). Modify the wordcount mapper.py so that the final output of the reducer
has the format filename: number of words in file. Note that no modifications are needed
to the wordcount reducer in order to do this.

 import os
 fileName = os.getenv('mapreduce_map_input_file')

 if fileName == None :
 fileName = "unknown"

12. Suppose that Hadoop Streaming using the MapReduce framework from (11) is executed
on the three files below. A separate mapper is used for each file, and a single reducer is
used.

a. What is the output from each mapper?
b. What is the input into the reducer
c. What is the final output from the reducer?

 Output from Mapper
First file Data.txt
 Here is the data.

What will the mapper do?

Second file File1.txt
 This file contains words.

Third file Abstract.txt
 Abstract:

The abstract is here.

Input into reducer:

Output from reducer:

