
CSC 343, Exam III Review

Exam III Notes

• You may bring one page of notes (front and back) to the exam. This page may be
handwritten or typed.

• Computer access will not be permitted during the exam.
• Cell phones must be put away at all times.
• Don't hesitate to contact me if you have any questions!

Exam III Outline

• Python programming concepts
o Named and anonymous functions (lambda notation)
o map, filter, and reduce
o dictionaries and JSON-formatted strings

• Spark Concepts
o RDDs and lineage
o Pair RDDs
o Partitions
o Persistence

• PySpark
o Creating RDDs using parallelize, textFile, and wholeTextFiles
o Transformations, including map, flatMap, filter, reduce, and distinct
o Pair RDDs and transformations including keyBy, groupByKey, and join
o Actions including count, collect, take, first, and countByKey
o Additional functions, including persist and numPartitions

Exam II Practice

1. Write a function that takes someone’s first and last name and returns a string of the
form ‘last, first’

2. The object courses below contains a list of JSON-formatted strings. Use PySpark to
create an RDD where each record is a JSON-formatted string, then do the following:

courses = ["""{"Subj":"CSC", "Crse": "450"}""",

 """{"Subj":"CSC", "Crse": "315"}""",
 """{"Subj":"MAT", "Crse": "216"}"""]

a. Transform each record into a python dictionary
b. Filter out the records where the subject is not CSC
c. Transform the remaining records into strings with the format CSC-450.

d. Starting from the RDD obtained in (a), transform the RDD into a pair RDD where the
key is the subject and the value is the course number. For each subject, count the
number of courses and display the subject and corresponding frequency.

The file report.txt is a plain text version of the Mueller Report
(https://www.justice.gov/storage/report.pdf), released to the public on April 18, 2019, which
reports on the “Investigation into Russian Interference in the 2016 Presidential Election”. Note:
because the format of the original report is a scanned PDF, mistakes have been introduced
when converting from scanned PDF to plain text file. The exercises below will give you insight
into the report, but the specific results may not be correct.

1. Create an RDD from report.txt where each line is a record in the RDD.
2. How many records are in the RDD (e.g., how many lines are in the file)?
3. Output the first 10 lines.
4. Transform this RDD so that each record contains only a single word.
5. What is the word count of the file (the total number of records)? How many unique

words (records) are there?
6. Transform the RDD from (4) to keep only words that are more than 4 letters long.
7. Now apply the appropriate transformations to find the 20 most frequent words and

their corresponding frequencies.
8. The most common type of redaction was for “Harm to Ongoing Matter”, or “HOM”. Use

Spark’s map and reduce functions to find the total number of redactions that contain
“Harm to Ongoing” or “HOM”. Note: python strings have a count method that will
count the number of occurrences of a set of characters in a string.

Spark Concepts:

9. What is the output when the code below is run, and why, assuming the file is deleted
where indicated? Assume that file.txt has 10 lines and 34 words in it.

 # read in the text file
 rdd = sc.textFile('file.txt')

 # count the number of lines
 print(rdd.count())

 # transform to RDD where each record is a word
 rddWords = rdd.flatMap(lambda x: x.split())

 # suppose that the file 'file.txt' is now deleted

 # count the number of words
 print(rddWords.count())

10. Create a diagram similar to the one on page 22 of the Spark Parallel Processing notes, to
label the tasks and stages for the following spark operation. Also show the records that
are created in each RDD. Assume that the data from the file is stored in 2 partitions, and
that the file contains the text:

Jeff Fr 18
Ali Jr 22
Steve Jr 21
Mary Fr 17

sc.textFile('ages.txt', numPartitions = 2) \
.map(lambda x: x.split('\t')) \
.map(lambda x: (x[1], int(x[2]))) \
.groupByKey(numPartitions = 1) \
.mapValues(lambda x: sum(x)/len(x)) \
.collect()

For example, the first RDD that is created has two partitions and is given by:

 RDD1
‘Jeff\tFr\t18’
‘Ali\tJr\t22’
‘Steve\tJr\t21’
‘Mary\tFr\t17’

