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Some definitions
• The probability of an event A, denoted by 𝑃(𝐴), represents the proportion 

of times that A occurs over the long run
• For example, if we flip a coin once, 𝑃 𝐻 = 0.50, indicating that we expect 

to get heads 50% of the time
• If all outcomes are equally likely, 𝑃(𝐴) is the proportion of outcomes 

where 𝐴 occurs.
• The conditional probability of A, given that B has occurred, is denoted by 
𝑃 𝐴 𝐵 and has the formula

𝑃 𝐴 𝐵 =
𝑃(𝐴 and 𝐵)

𝑃(𝐵)



Conditional probability

From the conditional probability 
formula, it is true that

Example:

Class status M F Total
Soph 4 2 6
Junior 3 2 5
Senior 3 1 4
Total 10 5 15𝑃(𝐴 and 𝐵) = 𝑃 𝐴 𝐵 𝑃(𝐵)

𝑃 𝐹𝑒𝑚𝑎𝑙𝑒 and 𝑆𝑜𝑝ℎ = 𝑃 𝐹𝑒𝑚𝑎𝑙𝑒 𝑆𝑜𝑝ℎ 𝑃(𝑆𝑜𝑝ℎ)
= 2/6 × 6/15
= 2/15

This should make sense, as there are 2 female sophomores and 15 total students



Bayes' Theorem

• 𝑃 𝐴 𝐵 = ! "|$ !($)
!(")

𝑃 𝑆𝑜𝑝ℎ|𝐹𝑒𝑚𝑎𝑙𝑒 = !(#$%&'$|)*+,)!()*+,)
!(#$%&'$)

=
2
6 × 6

15
5
15

=
2
5

This should make sense, as there are 2 
female sophomores and 5 total females

(given the person is female – and there 
are 5 females – there are 2 sophomores)

Class status M F Total
Soph 4 2 6
Junior 3 2 5
Senior 3 1 4
Total 10 5 15



Bayes' Theorem

• For	some	calculations,	we	do	not	need	to	calculate	the	
denominator,	𝑃(𝐵).
• Instead,	we	can	use	the	fact	that	

𝑃 𝐴 𝐵 ∝ 𝑃 𝐵|𝐴 𝑃(𝐴),

where ∝ means "is proportional to".



Bayes' Theorem
• A female student is selected. Is the student 

more likely to be a sophomore or a senior?

𝑃 𝑆𝑜𝑝ℎ|𝐹𝑒𝑚𝑎𝑙𝑒 ∝ 𝑃 𝐹𝑒𝑚𝑎𝑙𝑒 𝑆𝑜𝑝ℎ 𝑃 𝑆𝑜𝑝ℎ
= .

/ × /
01 = .

01

𝑃 𝑆𝑒𝑛𝑖𝑜𝑟|𝐹𝑒𝑚𝑎𝑙𝑒 ∝ 𝑃 𝐹𝑒𝑚𝑎𝑙𝑒 𝑆𝑒𝑛𝑖𝑜𝑟 𝑃 𝑆𝑒𝑛𝑖𝑜𝑟
= 0

2 × 2
01 = 0

01

Class status M F Total
Soph 4 2 6
Junior 3 2 5
Senior 3 1 4
Total 10 5 15

Since 𝑃 𝑆𝑜𝑝ℎ|𝐹𝑒𝑚𝑎𝑙𝑒 ∝ .
01 and 𝑃 𝑆𝑒𝑛𝑖𝑜𝑟|𝐹𝑒𝑚𝑎𝑙𝑒 ∝ 0

01 the selected individual is 

! )*+,|#$%&'$
! )$34*5|#$%&'$ = ⁄! "#

⁄" "#
= 2 times as likely to be a sophomore than a senior



Markov chains
• A Markov chain is a sequence of random variables (or states) 𝑋', 𝑋(, 
𝑋), … with the property that the next state 𝑋*+' depends on the 𝑚
previous states (including the current one). 
• Usually, 𝑚 is taken to be 1 in which case the next state depends only 

on the current one, and the Markov chain is said to have the Markov 
property and is a first order Markov model. 
• Formally, first order Markov models have the property

𝑃 𝑋*+' 𝑋', 𝑋(, … , 𝑋* = 𝑃(𝑋*+'| 𝑋*)
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𝑃 𝐹'𝐹(𝐵) = 𝑃 𝐹')𝑃 𝐹( 𝐹' 𝑃(𝐵)|𝐹(, 𝐹' =
= 𝑃 𝐹') 𝑃 𝐹( 𝐹' 𝑃(𝐵)|𝐹( (Markov assumption)

Example: 
• An individual has two coins, a fair (F) coin and a biased 

(B)coin. 
• Before each coin toss, there is a 10% chance that the 

individual will switch coins. 
• Initially, there is a 50% chance the individual selects the 

fair (or biased) coin. 
• Find the probability that the selected coins are FFB.
• Note that this is a 1st order Markov Chain. The subscript i

will be used for the ith selected coin

= 0.50 × 0.90 × 0.10
= 0.045
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State Start à F à F àB
Prob -

• Find the probability that the selected coins are FFB.
• We don't need the fancy notation. Just follow the 

arrows through the Markov Model and write the 
corresponding probabilities

0.50 0.90 0.10

• Now multiply the probabilities together to get the 
probability of the state (e.g., FFB)

P FFB = 0.50 × 0.90 × 0.10
= 0.045
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Hidden Markov models
• A Hidden Markov model (HMM) is a 

Markov chain where the states are hidden 
(unobserved)

• Hidden states emit observed values with 
certain probabilities. 

• The hidden states can then be deduced 
based on the observed values.

• General HMM notation:
Observed states: 𝑂0, 𝑂., …𝑂3
Hidden states: 𝐻0, 𝐻., …𝐻3

Initial state probabilities: 𝑃(𝐻!)
Transition state probabilities: 𝑃 𝐻"#! 𝐻" for all 𝑖
Emission probabilities: 𝑃(𝑂"|𝐻") for all 𝑖
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Hidden Markov models

• We can specify a HMM graphically or by 
specifying the relevant probabilities:

Hidden states: 𝐻0, 𝐻., …𝐻3

Initial state probabilities: 𝑃 𝐹! = 𝑃 𝐵! = 0.50
Transition state probabilities: 𝑃 𝐹"#! 𝐹" = 0.90, 𝑖 > 1

𝑃 𝐵"#! 𝐹" = 0.10, 𝑖 > 1
𝑃 𝐹"#! 𝐵" = 0.10, 𝑖 > 1
𝑃 𝐵"#! 𝐵" = 0.90, 𝑖 > 1

Emission probabilities: 𝑃 𝐻 𝐹" = 0.50 for all 𝑖
𝑃 𝑇 𝐹" = 0.50 for all 𝑖

𝑃 𝐻 𝐵" = 0.80 for all 𝑖
𝑃 𝑇 𝐵" = 0.20 for all 𝑖
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Hidden Markov models
• Three coins are flipped and HTH is observed. Which 

is more likely, that the coins were FFF or BFB?

• How likely is it that the coins were FFF, given that we 
observe HTH?

• We start by calculating 𝑃(𝐹!𝐹" 𝐹#|𝐻! 𝑇" 𝐻#)

𝑃(𝐹!𝐹" 𝐹#|𝐻! 𝑇" 𝐻#) ∝

𝑃(𝐻!| 𝐹!)𝑃 𝐹!

× 𝑃(𝑇"| 𝐹")𝑃 𝐹"|𝐹!

× 𝑃 (𝐻#| 𝐹#)𝑃 𝐹#|𝐹"

Start with fair coin, flip it, 
get heads

Keep fair coin, flip it, get 
tails

Keep fair coin, flip it, get 
heads

(0.50×0.50)

(0.50×0.90)

(0.50×0.90)

= 0.050625
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Hidden Markov models – P(FFF | HTH)

Prob (state)
State Start à F à F àF

Emission 
(observation) H T H

Prob (observed) -

• How likely is it that the coins were FFF, given that 
we observe HTH?
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Prob (state)
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Prob (observed) -

• How likely is it that the coins were FFF, given that 
we observe HTH?
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• Now multiply all the probabilities together to get the 
probability of the state, given the observations:

• 𝑃 𝐹𝐹𝐹 𝐻𝑇𝐻 ∝ 0.50×0.50×0.90×0.50×0.90×0.50
= 0.50$×0.90"
= 0.050625

Hidden Markov models – P(FFF | HTH)
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F

B

H    0.50

T     0.50

H    0.80

T    0.20

0.50

0.50

0.90

0.9

Start 0.10 0.10

Prob (state)
State Start à B à F àB

Emission 
(observation) H T H

Prob (observed) -

• How likely is it that the coins were BFB, given that 
we observe HTH?
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Hidden Markov models – P(BFB | HTH)
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Hidden Markov models – P(BFB | HTH)
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• Now multiply all the probabilities together to get the 
probability of the state, given the observations:

• 𝑃 𝐵𝐹𝐵 𝐻𝑇𝐻 ∝ 0.50×0.80×0.10×0.50×0.10×0.80
= 0.50"×0.80" ×0.10"
= 0.0016



Which is more likely?

• 𝑃 𝐹𝐹𝐹 𝐻𝑇𝐻 ∝ 0.050625
• 𝑃 𝐵𝐹𝐵 𝐻𝑇𝐻 ∝ 0.0016

• !(###|%&%)
!((#(|%&%)

= ).)+),-+
).)).,

≈ 31.64

If we observe HTH, we are about 32 times more likely to have flipped only 
the fair coin (FFF) than the biased, fair, and biased (BFB) coins.

But what about other possible states, such as BBB, BFF, etc?



Hidden Markov Models
• The goal of an HMM is to find the set of hidden states (such as the gene 

structure), which is unknown.
• We can (almost) never be certain, but the most likely set of hidden states 

is the state sequence 𝐻', 𝐻(, … , 𝐻* that maximizes

• Most of the time, we work with probabilities on the log scale, where the 
log of a product is equal to the sum of the logs.

𝑃(𝐻', … , 𝐻*| 𝑂', … , 𝑂*) ∝
𝑃 𝑂' 𝐻' 𝑃(𝐻') ×𝑃 𝑂( 𝐻( 𝑃(𝐻(|𝐻() ×⋯× 𝑃 𝑂* 𝐻* 𝑃(𝐻*|𝐻*<')



Prob (state) 0.50 0.10 0.10
State Start à B à F àB

Emission (observation)
H T H

Prob (observed) - 0.80 0.50 0.80

• 𝑃 𝐵𝐹𝐵 𝐻𝑇𝐻 ∝ 0.50×0.80×0.10×0.50×0.10×0.80
= 0.50"×0.80" ×0.10"
= 0.0016

Prob (state) (log scale) log(0.50) log(0.10) log(0.10)
State Start à B à F àB

Emission (observation)
H T H

Prob (observed) (log scale) - log(0.80) log(0.50) log(0.80)

• 𝑃 𝐵𝐹𝐵 𝐻𝑇𝐻 ∝ log 0.50 + log 0.80 + log 0.10 + log 0.50 + log 0.10 + log(0.80)
= 2× log 0.50 + 2 × log 0.80 + 2× log 0.10
=− −2.79588 (note that 10$%.'()** = 0.0016)



Viterbi algorithm
• How do we determine the optimal sequence of hidden states?
• Let's continue with our coin tossing example, where the hidden state 

sequence ends with either F or B. 
• Suppose we know the optimal hidden states for the first two 

observations, ending with F or B. Then there are 4 possibilities for the 
next hidden state:
• F à F
• B à F
• F à B
• B à B

• This lends itself to a dynamic programming solution, known as the 
Viterbi algorithm.
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Hidden Markov models
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Hidden Markov models

Fà F: 0.25 × 0.90(0.50)=0.1125* 
Bà F: 0.40 × 0.10(0.50)=0.02

Fà B: 0.25 × 0.10(0.20)=0.005 
Bà B: 0.40 × 0.90(0.20)=0.072*

0.1125*
0.072*
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• Find the optimal state that would generate HTH.

Hidden Markov models

Fà F: 0.1125 × 0.90(0.50)=0.050625* 
Bà F: 0.072 × 0.10(0.50)=0.0324

Fà B: 0.1125 × 0.10(0.80)=0.009 
Bà B: 0.072 × 0.90(0.80)=0.05184*
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0.050625
0.05184
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Hidden Markov models

The optimal final state ends in B, since 
0.05184 > 0.050625.

We then use traceback to find the optimal path, in 
this case yielding B à B à B. 

The optimal state sequence is BBB 

0.1125
0.072

0.050625
0.05184



Hidden Markov models

F B

F

F F F F

B

BBBB

B F

H T H
F 0.25 0.1125 0.050625
B 0.40 0.072 0.05184

Suppose 100 coin tosses, then
• Brute force: 2100 possibilities (31 

digits. Not feasible …

• Viterbi: (roughly) 100×4 = 400
calculations (no problem)

Viterbi algorithm eliminates non-optimal paths



Note: probabilities are on the log2 scale.
Source (no longer available), http://homepages.ulb.ac.be/%7Edgonze/TEACHING/viterbi.pdf

"Simple" model:
https://bmcbioinformatics.biomedc
entral.com/articles/10.1186/1471-
2105-5-59

Augustus Model:
https://academic.oup.com/bioinfor
matics/article/19/suppl_2/ii215/18
0603

http://homepages.ulb.ac.be/~dgonze/TEACHING/viterbi.pdf
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-5-59
https://academic.oup.com/bioinformatics/article/19/suppl_2/ii215/180603

