
Chapter 3: Branches

Motivating Example

n Devise an algorithm to calculate a person's weekly pay.
Assume that
n the person gets paid a fixed rate for regular time pay

(≤40 hours)
n the person makes time and a half for working overtime

(>40 hours)

Slide 1- 2

Branch Example

n The program must choose among two decisions (with or
without overtime pay)
n A branch lets a program choose between two (or

more) alternatives
n The flow of control refers to the order in which

statements are executed

n To calculate hourly wages there are two choices
n Regular time (up to and including 40 hours)

n gross_pay = rate * hours;

n Overtime (over 40 hours)
n gross_pay = rate * 40 + 1.5 * rate * (hours - 40);

Slide 2- 3

If-else syntax

// Statements that execute before the branches

if (expression) {
// Statements to execute when the
// expression is true (first branch)

} else {
// Statements to execute when the
// expression is false (second branch)

}

// Statements that execute after the branches

Slide 1- 4

Boolean Expressions

n Boolean expressions are expressions that are
either true or false

n comparison operators such as '>' (greater than)
are used to compare variables and/or numbers
n (hours > 40) is the boolean expression from the wages

example
n A few of the comparison operators use two

symbols (there are no spaces between the symbols!)
n >= greater than or equal to
n != not equal or inequality
n = = equal or equivalent

Slide 2- 5

Relational and equality operators*

Slide 1- 6

*Different operators are
used for String values

Precedence rules for logical operators

Slide 1- 7

Examples

n x > 6

n x > 6 || y < 5

n x == y

n !(x<10)

Slide 1- 8

n x = 5

n 5 > 3 || 1 > 2 && 10 > 20

n (5 > 3 || 1 > 2) && 10 > 20

Evaluate the following Boolean expressions in Java
(assume that x = 6 and y = 3):

Short circuit evaluation

Slide 1- 9

n Short-circuit evaluation can be used to prevent
run time errors

n Consider this if-statement

if ((kids != 0) && (pieces / kids >= 2)) {
System.out.println("Each child may have two pieces!");

}

n If the value of kids is zero, short-circuit evaluation
prevents evaluation of (pieces / 0 >= 2)

n If not, then this division by zero would cause a run-time error

Multi branch If-else syntax
if (expression_1) {

// Statements to execute when expression_1 is true
} else if (expression_2) {

// Statements to execute when expression_2 is true
// and all previous expressions are false

}

........

else if (expression_n) {
// Statements to execute when expression_n is true
// and all previous expressions are false

} else {
// Statements to execute when no previous expression
// is true

}

Slide 1- 10

String comparisons

Slide 1- 11

Example expression Description
str1.equals(str2) returns true if str1 is equal to str2
!str1.equals(str2) retruns true if str1 is not equal to str2

str1.compareTo(str2) < 0 returns true if str1 is less than str2

str1.compareTo(str2) == 0 returns true if str1 is equal to str2
str1.compareTo(str2) > 0 returns true if str1 is greater than str2

Comparison Returns

str1.equals(str2) true if str1 is equal to str2; otherwise, returns false

str1.compareTo(str2) A negative number, if str1 < str2 (alphabetically)
Zero, if str1 is equal to str2
A positive number, if str1 > str2 (alphabetically)

Additional String methods

Slide 1- 12

Method Description

str.indexOf(item) returns the index of item in string str, or
returns -1 if the item is not found

str.contains(item) returns true if the string str contains the
item; or false otherwise

str.replace(findStr,replaceStr) Returns a string with all occurences of
findStr replaced by replaceStr in the string
str

Definition: For a particular string, the index value i refers to
the character at position i +1

L o o k a t t h i s s e n t e n c e .
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

index

